What we had and what we wanted

• Had:

- Beamtime in 66 days
- Two software developers
- pyana
- LABELIT
- Computational Crystallography Toolbox (cctbx)
- Sample data
- Wanted:
 - Processing suite for XFEL data

Understanding the CSPAD

Understanding the CSPAD

Fine detector calibration

Metrology refinement March 2012

Importance of metrology

 Single-pixel metrology errors impact integration of highresolution reflections

Hattne et al. (2014) Nat Methods 11, 545-548

The hierarchical CSPAD

pyana multiprocessing

- Embarrassingly parallel
 - Every diffraction image can be indexed and integrated independently
 - More processors ⇒ faster processing
- *pyana* distributes events to subprocesses
 - Every process receives a nondeterministic subset of the events
 - Integrated intensities written to disk as they become available

stream

Early multiprocessing woes

Data rates and volumes

- Processing time estimates
 - Hit-finding: 1 s / image
 - Indexing and integration: 10 s / image
 - 2% hit rate @ 120 Hz: 380 CPU seconds to process 1 s of raw data
- NERSC has thousands of cores
- But NERSC ≠ SLAC

Data transfer SLAC NERSC

Electron diffraction

- Intense XFEL pulses enable diffraction measurements from tiny crystals
 - Collect diffraction pattern before onset of radiation damage
- Electrons interact with matter stronger than X-rays
 - But what about radiation damage?

Lysozyme microcrystals

MicroED: sample preparation

Deposit sample

Blot and freeze Load in TEM

Screen microcrystals

Electron crystallography X-ray Diffraction

Nannenga & Gonen (2014) Curr Opin Struct Biol 27, 24–31

Beam center refinement

The idea

Continuous rotation data collection

Nannenga et al. (2014) Nat Methods, in press

MicroED structure of catalase at 3.2 Å

Nannenga et al. (2014) Submitted manuscript

XFEL vs MicroED

- XFEL = MicroED
 - Tiny crystals
 - Partial intensities
 - Finicky processing
 - Finicky hardware (detector, sample delivery)
 - Chunked streams
- XFEL ≠ MicroED
 - Room temperature vs cryocooled
 - Less demanding experiment
 - Cheap and fast, can process data on a desktop
 - ≈ 5 authors per paper

Acknowledgements

- CCI
 - Paul Adams
 - Muhamed Amin
 - Aaron Brewster
 - Nathaniel Echols
 - Ralf Grosse-Kunstleve
 - Nigel Moriarty
 - Nicholas Sauter
 - Peter Zwart
- NERSC
 - David Skinner
- Yachandra group
 - Jan Kern
 - Rosalie Tran
 - Vittal Yachandra
 - Junko Yano

- Diamond
 - Richard Gildea
 - James Parkhurst
 - David Waterman
 - Graeme Winter
- Janelia Farm

•

- Tamir Gonen
- Matt ladanza
- Brent Nannenga
- Don Olbris
- Francis Reyes
- Dan Shi
- MRC LMB
 - Andrew Leslie
 - Garib Murshudov
- TVIPS/Fischione
 - Hans Tietz
 - Matthias Stumpf

- SLAC
 - Roberto Alonso-Mori
 - Uwe Bergmann
 - Sébastien Boutet
 - Mikhail Dubrovin
 - Igor Gaponenko
 - Christopher Kenney
 - Jason Koglin
 - Marc Messerschmidt
 - Ingrid Ofte
 - Amedeo Perazzo
 - Andrei Salnikov
 - Garth Williams
- Stanford
 - Axel Brunger
 - Monarin
 Uervirojnangkoorn

BERKELEY LAB

Oliver Zeldin

