

Goal

Able to run/understand some simple (yet not simple) psana-python
examples. For example, our 46-line example will:

•  Access LCLS data
•  Can be run online/offline

•  “Randomly accesses” events

•  Has real-time plots
•  Will run in parallel, in principle on thousands of cores

•  You can run it on your laptop (including parallelism)

Introduction to Psana

Psana: Photon Systems ANAlysis (comparable to CASS)

●  based on C++ and python

●  development started in 2011 (two years after start of LCLS!) and continues…

●  algorithms in reusable “modules” that can be chained together in a serial fashion, but
emphasizing putting logic (like filters, ROIs, other algorithms) in python.

●  support for detetector calibrations using standard tools

●  the same software functions offline and online (with real-time plot display)

●  analyzes data online/offline parallelizing over events (up to thousands of cores). Many
experiments have analyzed 120Hz online in real-time.

●  LCLS specific: not specific for crystallography.

Recently recommending psana-python to LCLS users:

●  easy, free, powerful state-of-the-art language, with reusable algorithm libraries (e.g. scipy)

●  use parallelization to overcome CPU limitations (many LCLS analyses are I/O bound anyhow)

●  some cool self-documenting features (e.g. tab-completion in ipython, python help strings)

Introduction

Psana used by:
•  Cctbx
•  Many LCLS experiments in all hutches
•  Produces the standard “translated” LCLS hdf5 files

Workshop is about BioXFEL software, but you may also want to
“play” with LCLS data using psana (e.g. how is the beam energy
changing? what is the range for this diode?)

A First 17-Line Psana-Python Script

•  Go to confluence.slac.stanford.edu
•  Click on “LCLS Data Analysis” on the right-hand side
•  Click on “psana: Python Interface” (fifth from top on left-hand side)

With a few small changes this script will work
online/offline/laptop, or run on 1000 cores parallelizing
over events, or access “calibrated” images.

Psana Event Processing

New Features (Last 10 Months)

●  MPI is the most commonly used multi-node parallelization for science
●  Can help with CPU/memory/input-output bottlenecks (up to parallel-

filesystem performance)
●  Batch–system support
●  psana provides parallelization-over-events (and others) using MPI
●  Each node access a different set of events in the file using random-

access

MPI Parallelization (!!)

One file, distributed across
parallel file system

Online Analysis

●  The same offline MPI parallelization works online as well, listening to
the DAQ network-multicast data

●  A 46-line python script is enough code to sum an image at 120Hz in
real-time (>1GB/s) running on multiple machines with MPI

●  User-definable plots show the results in real-time (complements “AMI”)
●  Many experiments that need custom monitoring have used this
●  Same calibration/geometry used for online/offline running

Remote Analysis and Visualization

●  Many users analyze data “in France” and remote visualization/analysis
can be cumbersome. Two recently-available improvements:
●  run full psana on your own Mac/Windows laptop on reduced-size data

using free “virtual box” software. (1GB, takes about 1 hour to install)
●  login to SLAC using free NX technology to improve remote X11

performance

Random Access to XTC Events

Can save “EventId” of interesting events (e.g. online), then after run
ends can jump just to those interesting events:

Demo of 46-line python script:

•  MPI Parallelization
•  online/offline analysis
•  Real-time plotting
•  Running on a laptop
•  XTC-file “random access”

How to Avoid Reading Documentation

What to do if you only know your experiment name and a run number

“ipython” tab-completion demo

Calibration Support

●  Psana does: geometry, bad-pixel,
common-mode, dark-subtraction,
many others.

●  Creating and managing run-
dependent calibration/geometry
constants for many detectors is a
challenging problem

●  We have both a GUI and a
command-line interface for
managing these constants

●  Every hutch uses this, and the same
constants work both offline/online

●  New generalized detector handling
allows any imaging detector to be
“calibratable/viewable” using the
same software

Detector Geometry

●  Geometry is another difficult problem that would ideally be solved
once, and not many times (cheetah, psana, cctbx, crystfel).

●  Dream: solve this problem once, not multiple times.
●  We would like to automate this process more

HDF5 Conversion and Custom Data Management

●  LCLS users require a portable/standard data format (HDF5)
●  psana provides the conversion from LCLS format (“XTC”) to HDF5 on-

demand
●  As a bonus, psana allows users to choose which data they want to

convert (including their own processed data)
●  They can then move this “standard reduced-size” data to their laptop

for further psana analysis (or other tool)

psana hdf5 translator

Large XTC Data
at LCLS

Small HDF5 File
on Windows/Mac

“Laptop” with psana

psana hdf5 translator

Large XTC Data
at LCLS

Small HDF5 File
on Windows/Mac

“Laptop” with psana

psana hdf5 translator

Large XTC Data
at LCLS

Small HDF5 File
on Windows/Mac

“Laptop” with psana

psana hdf5 translator

Large XTC Data
at LCLS

Small HDF5 File
on Windows/Mac

“Laptop” with psana

psana hdf5 translator

Large XTC Data
at LCLS

Small HDF5 File
on Windows/Mac “Laptop”

with psana

Algorithms

●  A lot already available with existing python modules (e.g. scipy)
●  Psana has a central “repository” for reusable algorithms (calibration,

radial integration, cluster finding)
●  many written in C++, now starting repository of python algorithms
●  High priority: we are adding more LCLS-specific algorithms

Accessing Data from “Outside” the Hutch

●  More and more: important devices are not included in the DAQ data.
(devices used by multiple hutches are not included!).

●  With psana we can now add the “outside hutch” data with the DAQ
data.

Summary

Major new psana features:
•  Same code online/offline
•  Easy python scripts
•  MPI Parallelization online/offline (several expts have analyzed all

120Hz online)
•  Real-time online plotting
•  Better detector calibration support
•  Random-access to events
•  Access to non-DAQ data

Growth areas:
•  Algorithms (although scipy provides many)
•  Detector Geometry: ideally more reuse (Cheetah, CASS, Psana,

cctbx, Crystfel) and more automation. Would be good if we could
avoid duplicate effort when new detector (e.g. EPIX) is deployed.

•  Easier data access (simpler names, more uniform accessor methods)

