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SAXS Literature and Software

Reviews:


• Putnam et al, Q Rev Biophys. Aug 2007; 40(3): 191-285.


• Jacques and Trewhella, Protein Science 2010 Apr; 19(4): 642–657.


• Svergun et al, Oxford University Press 2013, Small Angle X-Ray and 
Neutron Scattering from Solutions of Biological Macromolecules


• Long list of software for SAS data analysis for biological and non-biological 
applications available at:  


http://smallangle.org/content/software


• Most common package for analysis and modeling of biological SAS data is 
ATSAS, however many other excellent software packages exist

http://smallangle.org/content/software


What is small angle scattering?
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Basic SAXS Set-up

• particles in solution tumble - spherically averaged intensity is recorded


• radial integration results in one dimensional SAXS profile


• larger particles scatter at smaller angles → reciprocal space


• analysis of 1D profile yields info about size and shape of particles in solution



Contrast

• SAXS is a contrast method, i.e. it depends on the square of the difference in 
the electron density between the molecule and the solvent
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Contrast

• SAXS is a contrast method, i.e. it depends on the square of the difference in 
the electron density between the molecule and the solvent

ρsolvent
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Δρ

(Δρ)2 = (ρprotein - ρwater)2 = (0.44-0.33)2 ≃ 10% above 
background



Buffer Subtraction
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What can SAXS provide?

• Radius of gyration


• Maximum particle dimension


• Molecular weight


• Oligomeric state and organization in solution


• Amount of native flexibility or unfoldedness


• Visualization of disordered regions not seen in X-ray 
crystallography


• Low resolution molecular envelope



Interparticle Interactions

• Equation for scattering intensity:

I qQ V = F qQ V* S qQ V
Experimental 

Intensity
Form factor 
of particle

Structure factor 
of solution

• Form factor describes intraparticle interactions, i.e. size and shape


• Structure factor describes interparticle interactions, i.e. repulsion/attraction


• Ideally a monodisperse solution for SAXS should have no interparticle 
interactions, i.e. S(q) = 1



Interparticle Interactions
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Guinier Method

• Developed by André Guinier in 1939. 


• As q → 0, intensity can be approximated by:

I q( ) = I0e−q
2Rg

2 3

ln I(q) = ln I0 −
Rg
2
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Guinier Method

• Developed by André Guinier in 1939. 


• As q → 0, intensity can be approximated by:

I q( ) = I0e−q
2Rg

2 3

ln I(q) = ln I0 −
Rg
2

3
q2

y     =   b  +  m * x



Straight line shows 
no aggregation: 
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from slope of line, 
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Residuals can help 
identify nonlinearity
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qmin < π
Dmax

qmax < 1.3
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Guinier Region

Very large particles --> 
 Narrow Guinier region 

Too few points can make 
Rg estimate poor



Pair Distance Distribution Function

I(q) = p r( )∫
sin(qr)
qr

dr

I(q) 
reciprocal space

P(r) 
real space

q (Å-1) r (Å)

Fourier Transform



Pair Distance Distribution Function

• Rg can be calculated from


!

!

• Uses entire curve, less sensitive to 
interparticle effects


• Especially useful for large particles with 
narrow Guinier region and noisy data


• A good check of data quality against 
Guinier Rg estimate



Pair Distance Distribution Function

• Can be used to determine Dmax


• P(r) should gradually fall to zero 
at Dmax


• Underestimated Dmax appears 
as abrupt, forced descent to 
zero


• Starting with large values 
should identify a decent 
estimate of Dmax, given good 
quality data


• Errors in Dmax can be large, 
(~10 - 20%) for good data



Jacques and Trewhella, 2010 Protein Science Review

Sample quality 
greatly affects 
data analysis



Data Quality

• Use alternate methods (such as MALS, DLS, SEC) to characterize your 
sample to ensure no aggregation or polydispersity 


• High concentrations yield high signal to noise


• typical concentrations range from 1 - 10 mg/ml


• smaller particles require higher concentrations than larger particles


• RNA/DNA scatters more strongly, thus lower concentrations needed


• Check multiple concentrations to ensure no concentration dependence is 
occurring


• High signal-to-noise is important, but not as important as good sample 
quality


• Accurate buffer subtraction is essential (dialysis or flow-through buffer)



Multiple Methods to Estimate Molecular Weight

• From I(0) using experimental intensity calibration


• Intensity at q=0 (extrapolated). Corresponds to square of number of 
electrons in particle (similar to F(0 0 0) reflection is crystallography)


• Typical standards include water, BSA, Xylose Isomerase, or 
Lysozyme (check for interparticle effects in protein standards also)


• From particle volume


• Assumes average protein density of 1.37 g/cm3


• New method (Rambo, et al 2013) accurate even for disordered proteins


• SAXS MoW (http://www.if.sc.usp.br/~saxs/saxsmow.html)


• Molecular weight estimation methods accurate to about 10%

http://www.if.sc.usp.br/~saxs/saxsmow.html


Kratky Analysis

http://www.saxier.org/forum/viewtopic.php?t=337

http://www.saxier.org/forum/viewtopic.php?t=337&highlight=kratky


Envelope Reconstruction

• Several programs exist for ab initio 
envelope reconstructions, most 
common is DAMMIF


• Possible models for conventional 
minimization procedures too 
numerous to be computationally 
feasible (2N)


• Monte-Carlo like approaches must 
be used


• Can easily fall into local minima


• Simulated annealing used to find 
global minimum utilizing random 
seed generation
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• Several programs exist for ab initio 
envelope reconstructions, most 
common is DAMMIF


• Possible models for conventional 
minimization procedures too 
numerous to be computationally 
feasible (2N)


• Monte-Carlo like approaches must 
be used


• Can easily fall into local minima


• Simulated annealing used to find 
global minimum utilizing random 
seed generation

Avoid  
over-interpretation 

of envelopes



Envelope Reconstruction

• DAMMIF uses a dummy atom “bead” 
modeling approach


• 3D model must not only fit the data, but also 
conform to physical constraints


• DAMMIF utilizes additional “penalties” to 
discourage the production of envelopes that 
are loose, not compact, or disconnected


• Due to simulated annealing protocol, 
multiple DAMMIF runs will produce slightly 
different models each time

Score = χ2 [Iexp(s),Icalc(s)] + αP(x)



Envelope Reconstruction

• DAMMIF uses a dummy atom “bead” 
modeling approach


• 3D model must not only fit the data, but also 
conform to physical constraints


• DAMMIF utilizes additional “penalties” to 
discourage the production of envelopes that 
are loose, not compact, or disconnected


• Due to simulated annealing protocol, 
multiple DAMMIF runs will produce slightly 
different models each time

Score = χ2 [Iexp(s),Icalc(s)] + αP(x)

Fit to data Penalties



Envelope Reconstruction

• Averaging with DAMAVER
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Examples

Structure of protein 
unknown

Dimer of homolog 
fits well



What question do you want SAXS to answer?

• Defining the question is fundamental to reliable conclusions


• Ask yes or no questions and decide if SAXS can provide an answer


• Question determines resolution and quality of the data that is needed, 
which can affect experimental setup


• Sample-detector distance - size of particle vs resolution, Oligomers?


• Complexes - molecular weight difference, what resolution?


• Effect of solution conditions - buffer preparation?  Dialysis?  Number 
of concentrations?  Serial dilution?


• Signal to noise - Concentration? Exposure time? 


• Consider error propagation (12 + 12 = 1.42), i.e. twice the exposure 
doesn’t yield twice the signal-to-noise



Wrap-Up

• Many SAXS analyses require monodispersity, so make sure you’ve 
got good quality data before trying to draw conclusions.


• SAXS “resolution” is ambiguous, not directly 2π/q. Resolution is 
really the ability to discriminate between models.


• While useful, don’t read too much into envelopes.


• SAXS is a solution technique, so what’s in solution is very 
important.  Temperature, pH, or additives can alter your solution 
structure.


• Be sure to back up any conclusions you draw with other 
experimental evidence before publishing SAXS data.
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