Bio-XFEL Data Analysis Workshop August 21, 2014, LBNL Bldg 15-253

How good are my data?

Nicholas K. Sauter Lawrence Berkeley National Laboratory

Software tutorial: <u>http://cci.lbl.gov/xfel</u> Location at pslogin.slac.stanford.edu: /reg/g/cctbx

- L220 lysozyme (in tutorial)
- Gd-lysozyme (in tutorial)
- *Bacillus* Cry3A δ-endotoxin *in vivo* crystals
- Polyhedrin crystals (submitted)

- Photosystem II redox states
- Thermolysin (in tutorial)

The *cctbx.xfel* workflow:

Software tutorial: <u>http://cci.lbl.gov/xfel</u> *cctbx.xfel* at pslogin.slac.stanford.edu: /reg/g/cctbx This powerpoint: http://cci.lbl.gov/xfel/2014_workshop

Cctbx.xfel goals for the Bio-XFEL workshop

- Work through L498 thermolysin data (or a subset)
 - First worked example from XTC to final maps
 - Detect anomalous signal?
- Try the Gd-lysozyme data
- Start tonight
 - 2-hour work session insufficient to actually work the data
 - Discover student questions not anticipated
 - Application to students' own data
 - Gd-lysozyme not yet documented on the wiki
- Extended topics
 - LCLS instruments CXI or XPP; SACLA (Aaron Brewster)
 - Space groups with a lattice ambiguity (Wolfgang Brehm)
 - Sparse data (Oliver Zeldin)
 - Migration to psana (Chris O'Grady)

Software tutorial: <u>http://cci.lbl.gov/xfel</u> *cctbx.xfel* at pslogin.slac.stanford.edu: /reg/g/cctbx This powerpoint: http://cci.lbl.gov/xfel/2014_workshop

Ensemble distribution of measurements of single Bragg spots

Signal to noise and model accuracy are major issues

- Well conforming spot shape models intended to enhance signal to noise
- But are susceptible to positional error

Exact relationship of sensor tiles is crucial for modeling reflections

Cornell-SLAC pixel array detector (CS-PAD) at LCLS CXI endstation [Hart et al., 2012, Proc. of SPIE]

Quadrants are on movable rails

Sensors are field-serviceable

cspad.quadrants tool for automatic detection

- As a function of quadrant position (x & y), autocorrelation of the ring pattern with itself upon 45° rotation.
- Do the same with all 4 quadrants.

Toolbox is now refactored; the user now places the result x,y quadrant displacements directly in the phil file:

```
distl {
   quad_translations=3 -4 -3 -7 -12 0 -7 -5
}
```


Detector versioning

The new system brings metrology under user rather than developer control. Default detector geometries are still hard-coded based on date stamp.

> cxi.detector_format_versions

Format	version	Det. address	Start time	End time
	CXI 3.2	CxiDs1-0 Cspad-0	Sep 2010	Mar 2011
	CXI 4.1	CxiDs1-0 Cspad-0	Mar 2011	Oct 2011
	CXI 5.1	CxiDs1-0 Cspad-0	Oct 2011	May 2012
	CXI 6.1	CxiDs1-0 Cspad-0	May 2012	Jan 2013
	CXI 7.1	CxiDs1-0 Cspad-0	Jan 2013	Aug 2013
	CXI 7.d	CxiDsd-0 Cspad-0	Jan 2013	Aug 2013
	CXI 8.1	CxiDs1-0 Cspad-0	Aug 2013	Jan 2014
	CXI 8.2	CxiDs1-0 Cspad-0	Jan 2014	Mar 2014
	CXI 8.d	CxiDsd-0 Cspad-0	Aug 2013	Mar 2014
	CXI 9.1	CxiDs2-0 Cspad-0	Mar 2014	Aug 2014
Sacla.MPCCD		Sacla.MPCCD	None	None
	XPP 7.1	XppGon-0 Cspad-0	Jan 2013	Aug 2013
XPP 7	7.marccd	XppGon-0 marccd-0	Jan 2013	Aug 2013
	XPP 8.1	XppGon-0 Cspad-0	Aug 2013	Mar 2014
XPP 8	B.marccd	XppGon-0 marccd-0	Aug 2013	Mar 2014
	XPP 9.1	XppGon-0 Cspad-0	Mar 2014	Aug 2014

Downstream detector

2.5 meters from crystal at CXI 1 micron focus

We are converging on a data format to capture the hierarchical design

- ImageCIF/ CBF: international standard file format
- Formal language for describing the experiment (and the data)
- Herbert Bernstein Dowling College; critical collaborator
- DIALS software package will handle this standard format
- Will use HDF5 containers

Hierarchical organization: Detector -> Quadrant -> Sensor -> ASIC

Each level:

Relative 3D translation and 3D rotation, as well as readout fast & slow axes

cspad.metrology tool: whole-pixel and sub-pixel corrections

	Overall RMSD, all Bragg spots	Average Tile Displacement
As-given with manual quad placement distl {quad_translations= }	2.15 pixels	1.35 pixels
Nearest-pixel tile placement distl {tile_translations= }	1.86 pixels	0.40 pixels
Sub-pixel tile translations integration {subpixel_joint_model{translations}}	1.39 pixels	0.23 pixels
Rotations too integration {subpixel_joint_model{rotations}}	0.65 pixels	Near zero

Varying the resolution cutoff for each image

It is difficult to get crystal orientation from a still shot

$$f = \sum_{\substack{\text{spotfinder}\\\text{spots}}} \left(\mathbf{r}_{obs} - \mathbf{r}_{calc} \right)^2 + \left(\Delta \psi \left[\text{rotx}, \text{roty} \right] \right)^2$$

Crystal disorder is a combination of mosaicity and block size

Best-parameter fitting in cctbx.xfel; algorithm defined in phil file: integration.mosaic.refinement_target=ML

Rough mathematical expression for spot partiality

Molecular replacement, 10% sequence identity

$\Delta \psi$ angle offers a correction for partiality, supported by intensity statistics

Thermolysin data

Resolving an indexing ambiguity

• 28% of crystal structures have space groups where the lattice symmetry is higher than the space group symmetry

- Brehm & Diederichs (2014) Acta D70: 101
- Break the ambiguity by pairwise comparison of image-to-image intensity correlation coefficient
- 768 lattices sorted into two piles

cxi.brehm_diederichs tool is documented at http://cci.lbl.gov/xfel/index.php/Resolving_an_Indexing_Ambiguity

Challenges: Radial streaking

Shot-to-shot measurement of the X-ray incident pulse

Ewald sphere

Ewald sphere paradigm with high/low bandpass limits

Ewald sphere with mosaicity arclets

Full model: bandpass + mosaicity

Radial dispersion: modeling each pixel

Hattne J et. al. (2014): Nature Methods 11, 545-548.

Optimal combination of dispersion + mosaicity to model spots

Decreased E_{low}

Increased E_{high}

Single and two-color self seeded XFEL for SAD/MAD de novo phasing

Optimized self seeded XFEL for SAD phasing Soichi Wakatsuki, Bill Weis, Axel Brunger (Stanford) Two color self seeded XFEL with DE=95 eV For Yb MAD phasing

Two-color spectrum causes doubled Bragg spots

June 2014 preliminary results

Work in progress:

- Muhamed Amin
- Tara Michels-Clark
- Monarin Uervirojnangkoorn
- Ulf Lundstrom

So how good are my data?

Sources of systematic error:

- Variable crystal volume hit by beam
- Variable flux
- Detector metrology
- Inability to fully constrain the orientation model of still shots
- Varying crystal quality & internal disorder
- Stochastic SASE spectrum
- Non-isomorphism (Oliver Zeldin)

Measures of success:

- Bright spots r.m.s. displacement lattice model vs. observation
- Intensity statistics
- Wilson B factor
- Rfactors
- Peak height in the anomalous Fourier map

Acknowledgements

LBNL Computational Methods Johan Hattne

Aaron Brewster Muhamed Amin Nat Echols Paul Adams Peter Zwart James Holton

Photosystem II Vittal Yachandra Junko Yano Jan Kern

SLAC/PULSE Mike Bogan Ray Sierra

LCLS Spectroscopy Uwe Bergmann SSRL Goniometry Methods Mike Soltis Ana Gonzalez Ashley Deacon Aina Cohen Yingssu Tsai Scott McPhillips

UCLA BT toxin; amyloid David Eisenberg Duilio Cascio Michael Sawaya Jose Rodriguez Luki Goldschmidt

BNL

Sample Delivery Allen Orville Christian Roessler UCLA BT toxin; amyloid David Eisenberg Duilio Cascio Michael Sawaya Jose Rodriguez Luki Goldschmidt

Dowling College Computational Methods Herbert Bernstein

DIALS Development Graeme Winter Richard Gildea James Parkhurst Luis Fuentes-Montero

NERSC / ESNet David Skinner Gregory Bell

Diamond Light Source Polyhedra crystals

David Stuart Gwyndaf Evans Jonathan Grimes Helen Ginn Daniel Axford

Stanford University Computational Methods

Axel Brunger Mona Uervirojnangkoorn Oliver Zeldin

Phasing Methods Soichi Wakatsuki Bill Weis

MPI Heidelberg Data Processing Ilme Schlichting Karol Nass

NIH/NIGMS grants 1R01GM095887 and 1R01GM102520 DOE/Office of Science contract DE-AC02-05CH11231