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“If you don't have
good data,
then you must
learn statistics.”

-James Holton
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, Via AL

(hKI) = | P A | F(hk) |2

beam e
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I(hkl) - photons/spot (fully-recorded) w - rotation speed (radians/s)
lbeam - incident (photons/s/m?) L - Lorentz factor (speed/speed)
r, - classical electron radius P - polarization factor

(2.818x10°1° m) (1+cos2(26) -Pfac-cos(2®)sin2(26))/2
Via - volume of crystal (in m°) A - attenuation factor
Ve - volume of unit cell (in m3) eXP(-Mysar'loath)
A - X-ray wavelength (in meters!) F(hkl) - structure amplitude (electrons)
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pixel

Fraunhofer’s Formula

. [sin(rTN-hkI)

2

= Ibeam r

- photons/pixel/s
- incident (photons/s/m?)

- classical electron radius
(2.818x10-1° m)

- index of pixel (a-(u,+ug)/A)
- orientation (recip. cell vectors)

- unit vector pointing at
pixel,source

- X-ray wavelength (in meters!)

e () :
sin(Tr-hkl)

P A | F(hkl) |2

N - number of cells (each direction)
Q - solid angle of pixel (steradian)
P - polarization factor

(1+cos?(20) -Pfac-cos(2d)sin%(26))/2
A - attenuation factor

eXp('Uxtal'lpath)

F(hkl) - structure amplitude (electrons)

see: Kirian et al. (2010)



fastBragg

http://bl831.als.1lbl.gov/~jamesh/fastBragg/

sin(TTN-hkI)
| ivel = | r,2 Q P A | F(hkl) |2
pixel beam ‘e <sin(1'r-hkl) > ‘ ( ) ‘
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The Intensity of Redexion of X-Rays by Rock-Salt. 313

A series of readings plotted in this way is shown in fig. 1.
The readings are at first approximately constant, being due
to the general radiation. As the position at which the
chamber is set approaches that at which homogeneous rays

Fig. 1.
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are received, the jonization rises rapidly, romains constant
again as long as the whole ronci! of homogeneous rays enters
the chamber, and then falls to a value approximately equal
to its former steady value when the homogeneous rays are no
longer received.

6. When comparing two ervstal faces, this survey is made
in each case. One of the faces is then mounted in the
spectrometer, the chamber set so that it reccives the homo-
geneous beam, and a series of readings taken by sweeping
the erystal backwards and forwards. ?ho crystal faces are
intare[nngod, the chamber resct, and a series of readings
taken for the other face. This process is repeated several
times, and the meang of the intensities for the faces are
compared. The preliminary survey indicates what fraction
of tr»: total intensity observed must be subtracted, for each
face, in order to allow for the general radiation ; and whea
this has been done, the ratio of the corrected readings gives
the ratio of the intensity of reflexion by the two &oes.
A series of readings obtained in this way is given below,
It is a comparison of the reflexion by the (311) face of NaCl,
mounted so as to face left on the spectrometer, of the same
face turned throngh 180° o that it faces right, and of the
third-order reflexion from the face (100) mounted so as to
face right. The difference botween the values for (311) L
and (311) R is due to inaccurate grinding of the crystal

314 Prof. W. L. Bragg and Messrs. James and Bosanquet :

surface, the effect of which will be discussed later, It can
be shown that, although they differ greatly, their mwean
represents accurately the strength of refiexion if the face
were cut true. In taking the readings, the crystal was
turned 5 minutes of aro for every beat of a metronome,
beating 100 to the minate,

Comparison of (311) L, (311) R, and (300) R,

Swoep of  Chumber Potentio- Meas of

Fice, erystal. angle. -::d“: Readings. rondings.
ot sxaim Hso 2 (LI 120
(SR 10051235 20100 2 (57,05,18,57,66,88) 565
(BU)L  S80-112 2060 2 (75,74,74,79) 740
(OHR  1730-2000 382/ 3 (T7,78I87H) 78
@LL SHUM™ W 2 G700 T
(0O 1730-2000 3825 8 (78,78,79,80,8)) 790

A survey of the three refloxions showed that the homo-
geneous radiation was responsible for 769 per cent. of the
total effect in the case of the (300) R reflexion, 330 per cent.
for the (311) R, and 32'2 per cent. for the (311) L reflexion.
Since the intensity is very much greater for the (300) face
than for the (311) face, different scules on the potentiometer
were used. A reading of 722 on the second scale represents
72:2 per cent. of a total voltage of 1572, the corresponding
voltagre for the third seale being 22-79,

Taking this into account and allowing for the general
radiation, one gets a ratio

Mean intenaity, face 1311_) - .3'22
“Tntensity, face (0K~ 1345

In another experiment, (300) R and (300) L were com-
pared, and in this way the relative mean intensities of (311)
and (300) measured,

In order to have a uniform system of indicating both the
order of reflexion and the face at which it is taking place,
the convention of multiplying the indices of the face by the
order has been adopted. Thus, by the reflexion from (622)
is meant the second order of reflexion from the face (311).

The crystal is not turned continuonsly during each reading;
its setting is altered five minutes of arc at each beat of a
metronome by means of a series of spokes on the tangent
screw, It would be preferable to turn the crystal with a
uniform angular velocity, but it is unlikely that any ap-
preciable crror was caused by the method used. In‘order

=(-2395,
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interchanged, the chamber resct, and a series of readings
taken for the other face. This process is repeated several
times, and the meang of the intensities for the faces are
comrqred. The preliminary survey indicates what fraction
of the total intensity observed must be subtracted, for each
face, in order to allow for the general radiation ; and whea
this has been done, the ratio of the corrected readings gives
the ratio of the intensity of reflexion by the two &Ml.
A series of readings obtained in this way is given below,
It is a comparison of the reflexion by the (311) face of NaCl,
mounted so as to face left on the spectrometer, of the same
face turned throngh 180° o that it faces right, and of the
third-order reflexion from the face (100) mounted so as to
face right. The difference botween the values for (311) L
and (311) R is due to inaccurate grinding of the crystal
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surface, the effect of which will be discussed later, It can
be shown that, although they differ greatly, their mwean
represents accurately lﬁe strength of refiexion if the face
were cut true. In taking the readings, the crystal was
turned 5 minutes of aro for every beat of a metronome,
beating 100 to the minate,

Comparison of (311) L, (311) R, and (300) R,

Swoep of  Chumber Potentio- Meas of

Fnee, erystal. angle. -::I" Readings. rondings.
@t Swain Ho 2 LI 722
(SR 10051235 20100 2 (57,05,18,57,66,88) 565
(BU)L  S80-112 2060 2 (75,74,74,79) 740
(MR 1730-2000 38B 3 (TLIRIRTH) T8
@LL SHUM™ W 2 G700 T
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A survey of the three refloxions showed that the homo-
geneous radiation was responsible for 769 per cent. of the
total effect in the case of the (300) R reflexion, 330 per cent.
for the (311) R, and 32'2 per cent. for the (311) L reflexion.
Since the intensity is very much greater for the (300) face
than for the (311) face, different scules on the potentiometer
were used. A reading of 722 on the second scale represents
72:2 per cent. of a total voltage of 1572, the corresponding
voltagre for the third seale being 22-79,

Taking this into account and allowing for the general
radiation, one gets a ratio

Mean intenaity, face 1311_] - .3'22
“Tntensity, face (0K~ 1345

In another experiment, (300) R and (300) L were com-
pared, and in this way the relative mean intensities of (311)
and (300) measured,

In order to have a uniform system of indicating both the
order of reflexion and the face at which it is taking place,
the convention of multiplying the indices of the face by the
order has been adopted. Thus, by the reflexion from (622)
is meant the second order of reflexion from the face (311).

The crystal is not turned continuonsly during each reading;
its setting is altered five minutes of arc at each beat of a
metronome by means of a series of spokes on the tangent
screw, It would be preferable to turn the crystal with a
uniform angular velocity, but it is unlikely that any ap-
preciable crror was caused by the method used. In‘order
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A series of readings plotted in this way is shown in fig. 1.
The veadings are at first approximately constant, being due
to the general radiation. As the position at which the
chamber is set approaches that at which homogeneous rays
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are received, the jonization rises rapidly, romains constant
again as long as the whole rancil of homogeneous rays enters
the chamber, and then falls to a value approximately equal
to its former steady value when the homogeneous rays are no
longer received.

6. When comparing two crvstal faces, this survey is made
in each case. One of the faces is then mounted in the
spectrometer, the chamber set so that it reccives the homo-
geneous beam, and a series of readings taken by sweeping
the erystal backwards and forwards. ?he crystal faces are
interchanged, the chamber resct, and a series of readings
taken for the other face. This process is repeated several
times, and the meang of the intensities for the faces are
comrcred. The preliminary survey indicates what fraction
of the total intensity observed must be subtracted, for each
face, in order to allow for the general radiation ; and whea
this has been done, the ratio of the corrected readings gives
the ratio of the intensity of reflexion by the two &oel.
A series of readings obtained in this way is given below,
It is o comparison of tho reflexion by the (311) face of NaCl,
mounted so as to face left on the spectrometer, of the same
face turned throngh 180° o that it faces right, and of the
third-order reflexion from the face (100) mounted so as to
face right. The difference botween the values for (311) L
and (311) R is due to inaccurate grinding of the crystal
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surface, the effect of which will be discussed later, It can
be shown that, although they differ greatly, their mwean
represents accurately the strength of refiexion if the face
were cut true. In taking the readings, the crystal was
turned 5 minutes of aro for every beat of a metronome,
beating 100 to the minate,

Comparison of (311) L, (311) R, and (300) R,
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A survey of the three refloxions showed that the homo-
geneous radiation was responsible for 769 per cent. of the
total effect in the case of the (300) R reflexion, 330 per cent.
for the (311) R, and 32'2 per cent. for the (311) L reflexion.
Since the intensity is very much greater for the (300) face
than for the (311) face, different scules on the potentiometer
were used. A reading of 722 on the second scale represents
72:2 per cent. of a total voltage of 1572, the corresponding
voltagre for the third seale being 22-79,

Taking this into account and allowing for the general
radiation, one gets a ratio

Mean intensity, face (311) _ 3:22

“Tntensity, face (30O R~ 1315

In another experiment, (300) R and (300) L were com-
pared, and in this way the relative mean intensities of (311)
and (300) measured,

In order to have a uniform system of indicating both the
order of reflexion and the face at which it is taking place,
the convention of multiplying the indices of the face by the
order has been adopted. Thus, by the reflexion from (622)
is meant the second order of reflexion from the face (311).

The crystal is not turned continuonsly during each reading;
its setting is altered five minutes of arc at each beat of a
metronome by means of a series of spokes on the tangent
screw, It would be preferable to turn the crystal with a
uniform angular velocity, but it is unlikely that any ap-
preciable crror was caused by the method used. In‘order
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A series of readings plotted in this way is shown in fig. 1.
The veadings are at first approximately constant, being due
to the general radiation. As the position at which the
chamber is set approaches that at which homogeneous rays
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are received, the jonization rises rapidly, romains constant
again as long as the whole rancil of homogeneous rays enters
the chamber, and then falls to a value approximately equal
to its former steady value when the homogeneous rays are no
longer received.

6. When comparing two crvstal faces, this survey is made
in each case. One of the faces is then mounted in the
spectrometer, the chamber set so that it reccives the homo-
geneous beam, and a series of readings taken by sweeping
the erystal backwards and forwards. ?he crystal faces are
interchanged, the chamber resct, and a series of readings
taken for the other face. This process is repeated several
times, and the meang of the intensities for the faces are
comrcred. The preliminary survey indicates what fraction
of the total intensity observed must be subtracted, for each
face, in order to allow for the general radiation ; and whea
this has been done, the ratio of the corrected readings gives
the ratio of the intensity of reflexion by the two &oel.
A series of readings obtained in this way is given below,
It is o comparison of tho reflexion by the (311) face of NaCl,
mounted so as to face left on the spectrometer, of the same
face turned throngh 180° o that it faces right, and of the
third-order reflexion from the face (100) mounted so as to
face right. The difference botween the values for (311) L
and (311) R is due to inaccurate grinding of the crystal
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surface, the effect of which will be discussed later, It can
be shown that, although they differ greatly, their mwean
represents accurately the strength of refiexion if the face
were cut true. In taking the readings, the crystal was
turned 5 minutes of aro for every beat of a metronome,
beating 100 to the minate,

Comparison of (311) L, (311) R, and (300) R,

Swoep of  Chumber Potentio- Meas of

Fice, erystal. angle. l::ln Readings. rondings.
@t S He 2 @LEED 722
(St R 10051255 21 2 (67,55,58,57,56,56)  G6G
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A survey of the three refloxions showed that the homo-
geneous radiation was responsible for 769 per cent. of the
total effect in the case of the (300) R reflexion, 330 per cent.
for the (311) R, and 32'2 per cent. for the (311) L reflexion.
Since the intensity is very much greater for the (300) face
than for the (311) face, different scules on the potentiometer
were used. A reading of 722 on the second scale represents
72:2 per cent. of a total voltage of 1572, the corresponding
voltagre for the third seale being 22-79,

Taking this into account and allowing for the general
radiation, one gets a ratio

Mean intensity, face (311) _ 3:22

“Tntensity, face (30O R~ 1315

In another experiment, (300) R and (300) L were com-
pared, and in this way the relative mean intensities of (311)
and (300) measured,

In order to have a uniform system of indicating both the
order of reflexion and the face at which it is taking place,
the convention of multiplying the indices of the face by the
order has been adopted. Thus, by the reflexion from (622)
is meant the second order of reflexion from the face (311).

The crystal is not turned continuonsly during each reading;
its setting is altered five minutes of arc at each beat of a
metronome by means of a series of spokes on the tangent
screw, It would be preferable to turn the crystal with a
uniform angular velocity, but it is unlikely that any ap-
preciable crror was caused by the method used. In‘order

=(-2395,



Bragg, James & Bosanquet (1921). Philos. Mag. Ser. 6, 41, 309-337.

The Intensity of Redexion of X-Rays by Rock-Salt, 313

A series of readings plotted in this way is shown in fig. 1.
The veadings are at first approximately constant, being due
to the general radiation. As the position at which the
chamber is set approaches that at wiich homogeneous rays
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are received, the jonization rises rapidly, romains constant
again as long as the whole roncil of homogeneous rays enters
the chamber, and then falls to a value approximately equal
to its former steady value when the homogeneous rays are no
longer received.

6. When comparing two crvstal faces, this survey is made
in each case. One of the faces is then mounted in the
spectrometer, the chamber set so that it reccives the homo-
geneous beam, and a series of readings taken by sweeping
the erystal backwards and forwards. ﬁ?he crystal faces are
interchanged, the chamber resct, and a series of readings
taken for the other face. This process is repeated several
times, and the meang of the intensities for the faces are
comrnred. The preliminary survey indicates what fraction
of the total intensity observed must be subtracted, for each
face, in order to allow for the general radiation ; and whea
this has been done, the ratio of the corrected readings gives
the ratio of the intensity of reflexion by the two faces.
A series of readings obtained in this way is given below,
It is o comparison of tho reflexion by the (311) face of NaCl,
mounted so as to face left on the spectrometer, of the same
face turned throngh 180° o that it faces right, and of the
third-order reflexion from the face (100) mounted so as to
face right. The difference botween the values for (311) L
and (311) R is due to inaccurate grinding of the crystal
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surface, the effect of which will be discussed later, It can
be shown that, although they differ greatly, their wean
represents accurately the strength of refiexion if the face
were cut true. In taking the readings, the crystal was
turned 5 minutes of aro for every beat of a metronome,
beating 100 to the minate,

Comparison of (311) L, (311) R, and (300) R.

Swoep of  Chumber Potentio- Meas of

Faee, erysal. angle, -;:l" Readings. rondings.
e fwaim S 3 @LIBIL 722
(SR 10051235 2000 2 (57,55,38,57,66,56) 565
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A survey of the three refloxions showed that the homo-
geneous radiation was responsible for 769 per cent. of the
total effect in the case of the (300) R reflexion, 330 per cent.
for the (311) R, and 32'2 per cent. for the (311) L reflexion.
Since the intensity is very much greater for the (300) face
than for the (311) face, different scules on the potentiometer
were used. A reading of 72'2 on the second scale represents
72:2 per cent. of a total voltage of 1572, the corresponding
voltage for the third scale being 22-79,

Taking this into account and allowing for the general
radiation, one gets a ratio

Mean imenaity, faoo_(Bll_] - .3'22
“Tntensity, face (OO R~ 1345

In another experiment, (300) R and (300) L were com-
pared, and in this way the relative mean intensities of (311)
and (300) measured,

In order to have a uniform system of indicating both the
order of reflexion and the face at which it is taking place,
the convention of multiplying the indices of the face by the
order has been adopted. Thus, by the reflexion from (622)
is meant the second order of reflexion from the face (311).

The crystal is not turned continuonsly during each reading;
its setting is altered five minutes of arc at each beat of a
metronom - the tangent
~ It would be preferable to turn the crysia
uniform angular velocity, bot it is unlikely that any ap-
iable crror was caused by the method used. In‘ord
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A series of readings plotted in this way is shown in fig. 1.
The veadings are at first approximately constant, being due
to the general radiation. As the position at which the
chamber is set approaches that at wiich homogeneous rays
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are received, the jonization rises rapidly, romains constant
again as long as the whole roncil of homogeneous rays enters
the chamber, and then falls to a value approximately equal
to its former steady value when the homogeneous rays are no
longer received.

6. When comparing two crvstal faces, this survey is made
in each case. One of the faces is then mounted in the
spectrometer, the chamber set so that it reccives the homo-
geneous beam, and a series of readings taken by sweeping
the erystal backwards and forwards. ﬁ?he crystal faces are
interchanged, the chamber resct, and a series of readings
taken for the other face. This process is repeated several
times, and the meang of the intensities for the faces are
comrnred. The preliminary survey indicates what fraction
of the total intensity observed must be subtracted, for each
face, in order to allow for the general radiation ; and whea
this has been done, the ratio of the corrected readings gives
the ratio of the intensity of reflexion by the two faces.
A series of readings obtained in this way is given below,
It is o comparison of tho reflexion by the (311) face of NaCl,
mounted so as to face left on the spectrometer, of the same
face turned throngh 180° o that it faces right, and of the
third-order reflexion from the face (100) mounted so as to
face right. The difference botween the values for (311) L
and (311) R is due to inaccurate grinding of the crystal
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surface, the effect of which will be discussed later, It can
be shown that, although they differ greatly, their wean
represents accurately the strength of refiexion if the face
were cut true. In taking the readings, the crystal was
turned 5 minutes of aro for every beat of a metronome,
beating 100 to the minate,

Comparison of (311) L, (311) R, and (300) R.

Swoep of  Chumber Potentio- Meas of

Faee, erysal. angle, -;:l.: Readings. rondings.
@ %waim Hs 2 (LRI 722
(SR 10051235 2000 2 (57,55,38,57,66,56) 565
(BI)L  S&0-112 2060 2 (78,74,74,7Y) 740
(HR 173000  I8H 3 (77,78,78.,7%) 778
$SILL S80-11 20 0 2 (72,71, 70.72,71,70) 710
(S0 17 30-2000 J8 25 3 (78,78, 79,80, B} 90

A survey of the three refloxions showed that the homo-
geneous radiation was responsible for 769 per cent. of the
total effect in the case of the (300) R reflexion, 330 per cent.
for the (311) R, and 32'2 per cent. for the (311) L reflexion.
Since the intensity is very much greater for the (300) face
than for the (311) face, different scules on the potentiometer
were used. A reading of 72'2 on the second scale represents
72:2 per cent. of a total voltage of 1572, the corresponding
voltage for the third seale being 2279,

Taking this into account and allowing for the general
radiation T

Mean imenaity, faoo_(Bll_] - .3'22
“Tntensity, face (OO R~ 1345

In another e - were com-
pared, and in this way the relative mean intensities of (311)
and (300) measured,

In order to have a uniform system of indicating both the
order of reflexion and the face at which it is taking place,
the convention of multiplying the indices of the face by the
order has been adopted. Thus, by the reflexion from (622)
is meant the second order of reflexion from the face (311).

The crystal is not turned continuonsly during each reading;
its setting is altered five minutes of arc at each beat of a
metronome by means of a series of spokes on the tangent
screw. It would be preferable to turn the crystal with a
uniform angular velocity, bot it is unlikely that any ap-
preciable crror was caused by the method used. In‘order
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nearBragg program

http://bl831l.als.1lbl.gov/~jamesh/nearBragg/

*“assumption-free” total scattering
*no Fourier Transform

*no unit cells

‘no “mosaicity”

arbitrary “atoms”

arbitrary “source”

ecoherent or not
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Sample vibration



100 fs damage “threshold”

Lomb et al. (2011) Phys Rev B 84, 214111
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Rough values of energy quanta

1 MeV
100 keV
10 keV

1 keV
100 eV
10 eV
1eV
100 meV
10 meV

100 GJ/mol
10 GJ/mol
1 GJ/mol
100 MJ/mol
10 MJ/mol
1 MJ/mol
100 kd/mol
10 kd/mol

1 kdJ/mol

Medical radiation therapy
Medical imaging

X-ray crystallography

S and P K-edges

“water window”

C=C bond

C-C bond, visible light
hydrogen bond

heat (~300 K)



Dose-rate dependence of damage
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Kendrew et al. (1960) "Structure of Myoglobin” Nature 185, 422-427 .



Magdoff & Crick (1955) “Ribonuclease II.
Accuracy of measurement and shrinkage”,
Acta Cryst. 8, 461-8.



C

Magdoff & Crick (1955) “Ribonuclease II.
Accuracy of measurement and shrinkage”,
Acta Cryst. 8, 461-8.



- D

Magdoff & Crick (1955) “Ribonuclease II.
Accuracy of measurement and shrinkage”,
Acta Cryst. 8, 461-8.



-

Magdoff & Crick (1955) “Ribonuclease II.
Accuracy of measurement and shrinkage”,
Acta Cryst. 8, 461-8.



- >

Magdoff & Crick (1955) “Ribonuclease II. Crick & Magdoff (1956) “The theory of the
Accuracy of measurement and shrinkage”,  method of isomorphous replacement for
Acta Cryst. 8, 461-8. protein crystals”, Acta Cryst. 9, 901-8.
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3awb
3aw’

RH 84.2% vs 71.9% RMSD=0.18 A R __=44.5%



Non-isomorphism in lysozyme

Dear James

The story of the two forms of lysozyme crystals goes back to about 1964 when it was found that the diffraction
patterns from different crystals could be placed in one of two classes depending on their intensities. This discovery
was a big set back at the time and | can remember a lecture title being changed from the 'The structure of
lysozyme' to 'The structure of lysozyme two steps forward and one step back'. Thereafter the crystals were
screened based on intensities of the (11,11,1) rows to distinguish them (e.g. 11,11,4 > 11,11,5 in one form and vice
versa in another). Data were collected only for those that fulfilled the Type Il criteria. (These reflections were easy
to measure on the linear diffractometer because crystals were mounted to rotate about the diagonal axis). As |
recall both Type | and Type Il could be found in the same crystallisation batch . Although sometimes the external
morphology allowed recognition this was not infallible.

The structure was based on Type Il crystals. Later a graduate student Helen Handoll examined Type I. The work,
which was in the early days and before refinement programmes, seemed to suggest that the differences lay in the
arrangement of water or chloride molecules (Lysozyme was crystallised from NaCl). But the work was never
written up. Keith Wilson at one stage was following this up as lysozyme was being used to test data collection
strategies but | do not know the outcome.

An account of this is given in International Table Volume F (Rossmann and Arnold edited 2001) p760.

Tony North was much involved in sorting this out and if you wanted more info he would be the person to contact. |
hope this is helpful. Do let me know if you need more.

Best wishes

Louise
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Vicker’s hardness

Tachibana et al. (1999) J. Cryst. Growth 198, 661-664.
Koizumi et al. (2009) Physical Review E 79, 61917.
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Tris buffer vs temperature
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Tris buffer under cryo
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Douzou (1977) Cryobiochemistry. Academic Press.
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Self-calibrated damage limit

2
<1> _2n 10°7 fdecayedpR4/14 0.5AH T (20 ,14R) (3 +COS 4(9)<fa > exp| - ZB( sin O )2
ot 9 hC fNHnASUMr VM2 ln(2 )Sin e (1 - T;phere (O’luen’R )) Sine <Ma>
Where:
(I)DL - average damage-limited intensity (photons/hkl) at a given resolution
105 - converting R from pm to m, r, from m to A, p from g/cm?3 to kg/m3 and MGy to Gy
r, - classical electron radius (2.818 x 1015 m/electron)
h - Planck’s constant (6.626 x 10-34 J-s)
c - speed of light (299792458 m/s)
foecayed - fractional progress toward completely faded spots at end of data set
o) - density of crystal (~1.2 g/cm3)
R - radius of the spherical crystal (um)
A - X-ray wavelength (A)
fuy - the Nave & Hill (2005) dose capture fraction (1 for large crystals)
Nasu - number of proteins in the asymmetric unit
M. - molecular weight of the protein (Daltons or g/mol)
v, - Matthews’s coefficient (~2.4 A3/Dalton)
H - Howells’s criterion (10 MGy/A)
] - Bragg angle
(faz) - number-averaged squared structure factor per protein atom (electron?)
(Ma) - number-averaged atomic weight of a protein atom (~7.1 Daltons)
B - average (Wilson) temperature factor (A2)
7] - attenuation coefficient of sphere material (m-")
Mg, - mass energy-absorption coefficient of sphere material (m-1)

Holton & Frankel (2010) Acta D 66 393-408.
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Summary

http://bl83la.als.l1lbl.gov/
~jamesh/powerpoint/BioXFEL SvN 2014 .pptx
http://bl83la.als.1lbl.gov/

example data sets/Illuin/LCLS/

Partiality is backwards with stills
Check your Wilson plot
Control: try fake data
The B factor is everything
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How do | convert SMV to XTC?
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How do | convert SMV to XTC?
How do | convert XTC to SMV?
Can you get Fs from my fastBragg data?
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Detector calibration: ALS 8.3.1
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Calibration Error

separate: 2.5%
mixed: 0.9%



Calibration Error

separate: 2.5%
mixed: 0.9%

2.5%2-0.9%7% = 2.3%7
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Detector calibration: 7247 eV
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Spatial Heterogeneity in Sharp Spot Sensitivity

Pilatus is not immune!

Dan Schuette PhD Thesis (2008) Fig 6.22 page 198, Gruner Lab, Cornell University.
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Spatial Heterogeneity in Sharp Spot Sensitivity

average change in spot intensity (%)

(SHSSS): Q315r vs Pilatus
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lysozyme: real and reciprocal



lysozyme: thermal motion



Muybridge’s galloping horse (1878)



Muybridge’'s multi-camera



Muybridge’s galloping horse (1878)

“Time-resolved” diffraction

Real space reciprocal



Muybridge’s galloping horse (1878)

Average intensity

Real space reciprocal



Muybridge’s galloping horse (1878)

Average electron density

Real space reciprocal



Muybridge’s galloping horse (1878)

Sum(intensity) — Sum(density) = diffuse scatter

Real space reciprocal



Muybridge’s galloping horse (1878)

F F . With density phases

incoh ~— ' coheren

Real space reciprocal



Muybridge’s galloping horse (1878)

RMS variation in density

Real space reciprocal
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Molecular Dynamics Simulation

using real
crystal’s lattice

1aho
Scorpion toxin

Cerutti et al. (2010).J. Phys. Chem. B 114, 12811-12824.
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Molecular Dynamics Simulation

using real
crystal’s lattice

1aho
Scorpion toxin

0.96 A resolution
64 residues
Solvent: H,0 + acetate

Cerutti et al. (2010).J. Phys. Chem. B 114, 12811-12824.
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Electron density from 24,000 conformers



Electron density from 24,000 conformers
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2F |:Calc and (Fsim CI)sim) - (Fcalc CI)calc) maps

sim

1.0 A data
Rerys= 0.137
R.._=0.159

1 "sigma” 2F-F.

free



Regular model with real data!

1.0 A data
Rerysi= 0-116
R..=0.135

free

1 "sigma” 2F,-F



Molecular Dynamics vs Observation

1aho 64-residue scorpion toxin in water to 1.0 A resolution
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refined_vs_Fsim.pdb \ l 1aho.cif 1aho.pdb
F F Foe F
R

Reye= 0.137 oo — 0.69  R_=0.116
>
) 0 Rp.. = 0.48 t0 4 A 0 |

calc Sim calc




Molecular Dynamics vs Observation

1aho 64-residue scorpion toxin in water to 1.0 A resolution

refined_vs_Fsim.pdb \ l 1aho.cif 1aho.pdb
F F Fooe F
’ Reye= 0.137 o Rfee = 0.69 *Rcrys; 0.116>‘
R...=048t04A

calc Sim obs calc

, rmsd= 1.05A «
LSQ rmsd = 0.43A




Molecular Dynamics vs Observation

RMSD
1.05 A



Molecular Dynamics vs Observation

RMSD
0.45 A
aligned



Molecular Dynamics vs Observation

Sodium acetate trihydrate
5 atoms

3 waters

0.9 A resolution

C2/c



Molecular Dynamics vs Observation

Sodium acetate trihydrate
5 atoms

3 waters R
0.9 A resolution

C2/c

=0.03

free



Molecular Dynamics vs Observation

fav8
8 residues
4 waters

1.0 A resolution
P1



Molecular Dynamics vs Observation

“fav8” 8-residue aromatic peptide with 4 waters to 1.0 A resolution

refined_vs Fsim.pdb \ l fav8.fcf fav8.cif
F el F F F

< X O >

Sim obs calc




Molecular Dynamics vs Observation

“fav8” 8-residue aromatic peptide with 4 waters to 1.0 A resolution
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“fav8” 8-residue aromatic peptide with 4 waters to 1.0 A resolution
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F F Fooe F

calc Sim obs calc
|( Rcryst= 0.13 >|< Rfree= 023 Rcryst= 0'16>
R, =0.20 to 2A R1 = 0.041

free

With 40 cutoff!



Molecular Dynamics vs Observation

“fav8” 8-residue aromatic peptide with 4 waters to 1.0 A resolution

refined_vs_Fsim.pdb \ l fav8.fcf fav8.cif
F |:sim I:obs F
’ Reye= 013 s Rfee= 0.23 Rype= 0.16

cryst= )
Riee = 0.20 to 2A R1=0.041
With 40 cutoff!

calc calc

, msd=020A «
LSQ rmsd = 0.091A & 0.15 A
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