STB 533. Crystallographic Methods of Structural Biology
Course Syllabus and Class Schedule
Fall Semester 2014. Class meetings 10:30-11:45 am Tuesdays and Fridays

The goal of the course is that students acquire sufficient knowledge and understanding of the basic principles of biomolecular crystal structure analysis that they will be able to comfortably, and with interest and insight, read and comprehend the articles in Volume F of the International Tables for Crystallography: Crystallography of Biological Macromolecules, and articles in the current and recent literature reporting research in structural molecular biology by diffraction methods.

Textbooks for the course are:

Baltimore, Maryland: Johns Hopkins University Press.

<table>
<thead>
<tr>
<th>Dates</th>
<th>Topics</th>
<th>Instructor</th>
</tr>
</thead>
</table>
| 26, 29 Aug. | Introduction
Protein structural elements
1° aa sequence; 2° α-helix, β strand, β sheet, loop;
3° domain fold; 4° domain assembly.
Overview of biomacromolecular crystallography
Rupp, chs. 1-4 (Only §§ 1.1-1.5 and 3.2) | Blessing |
| 2, 5 Sept. 9, 12 | Geometrical crystallography
Laws of classical crystallography
Lattices, point groups, space groups
Crystal faces, lattice planes, and Miller indices
The Bragg equation and the Ewald construction
Reciprocal space and the reciprocal lattice
Rupp, ch. 5 | Blessing |
| 16, 19 Sept. 23, 26 | X-Ray diffraction physics
X-Ray sources
Wave nature of X-rays
X-Ray scattering
by an electron, an atom, a molecule
by a lattice row, a lattice plane
by a crystal – Laue diffraction / Bragg reflection
The crystal structure factor
Rupp, ch. 6 | Blessing |
| 30 Sept, 3 Oct. 7, 10 | Statistics and probability in crystallography
Descriptive statistics – error propagation
Probability distributions – joint, marginal, and conditional
Likelihood and Bayesian inference
Rupp, ch. 7 | Blessing |
<p>| | Mid-term exam | |</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Reference(s)</th>
</tr>
</thead>
</table>
| 14, 17 Oct. 21, (24) | **Diffraction measurements**
Crystal classes and Laue groups
Diffraction symmetry – Friedel and Bijvoet pairs
Space group determination – Systematic extinctions
Reading the *International Tables*
Non-crystallographic symmetry | **Rupp, chs. 8, 6 (§6.5), and 5 (§5.2)** |
| 28, 31 Oct. 4, (7)
(Fri., 7 Nov. BHT meeting) | **Diffraction measurements (cont’d)**
Instrumentation – robotic sample handling, pixel detectors
Data collection – local and remote control software
Data processing – data reduction and error analysis | **Rupp, chs. 8 and 6 (§6.4 and §6.5)** |
| 11, 14 Nov. 18, 21 | **Structure determination – the phase problem**
The “fundamental theorem” of structural crystallography
\[F_{hkl} = |F_{hkl}| e^{i\varphi_{hkl}} \frac{F}{F^{-1}} \rho(x,y,z) \]
Fourier theory
The Patterson function
Patterson maps, Harker sections
Molecular replacement methods | **Blessing** |
(Fri., 28 Nov. Thanksgiving recess) | **Structure modeling and refinement**
SIR, MIR, SAD, SIR/SAD, MAD methods
Stereochemical restraints
NCS averaging and constraints
Fourier methods
Least-squares methods
Maximum likelihood methods
Energy minimization methods | **Blessing** |
| 9, 12 Dec. | **Structure refinement and validation**
Precision indices
Uncertainty estimates
Ramachandran plots
Richardson MolProbity analysis
Real-space density residual | **Blessing** |
| 16 Dec. | Final exam |
Bibliography of Teaching and Learning Materials

Robert H. Blessing,
Department of Structural Biology
State University of New York
The University at Buffalo
and
Hauptman-Woodward Biomedical Research Institute
blessing@hwi.buffalo.edu

The following books and Internet sites provide very good teaching and learning materials for biocrystallography. Especially good websites, very well worth the time for extended and repeated visits, are those of Gervais Chapuis, Nicolas Schoeni, and Wes Hardecker (Lausanne); Martin Martínez Ripoll and Félix Hernández Cano (CSIC, Madrid); Gerard Kleywegt (Uppsala); Thomas Proffen (ORNL) and Reinhard Neder (Erlangen); Randy Read (Cambridge); Bernard Rupp (q.e.d. life sciences discoveries, inc.); Michael Sawya and Duilio Casico (UCLA); Bob Sweet (NSLS/BNL); and Joe Wedekind (U of R). The sites were accessible and functioning as of Sunday, 3rd August 2014.

http://escher.epfl.ch/eCrystallography/

http://cen.xraycrystals.org/

http://www.ccp4.ac.uk/html/pxmaths/index.html

http://www.sci.sdsu.edu/TFrey/Bio750/FourierTransforms.html

Rod Nave (2002). *HyperPhysics and HyperMath*. Department of Physics and Astronomy, Georgia State University. http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath

