Fourier transformations by numerical grid summations

$$F_{hkl} \overset{\mathcal{F}}{\underset{\mathcal{F}^{-1}}{\rightleftharpoons}} \rho(x,y,z) \qquad \begin{cases} \rho(x,y,z) = \mathcal{F}[F_{hkl}] & \text{Fourier synthesis} \\ F_{hkl} = \mathcal{F}^{-1}[\rho(x,y,z)] & \text{Fourier analysis} \end{cases}$$

Fourier Synthesis

$$\rho(x_{p}, y_{q}, z_{r}) = \frac{1}{V_{\text{cell}}} \sum_{h_{\text{min}}}^{h_{\text{max}}} \sum_{k_{\text{min}}}^{k_{\text{max}}} \sum_{l_{\text{min}}}^{l_{\text{max}}} |F_{hkl}| \cos \left[\varphi_{hkl} - 2\pi (hx_{p} + ky_{q} + lz_{r}) \right]$$

$$0 \le x_p, y_q, z_r < 1 \begin{cases} x_p = p/N_x, & y_q = q/N_y, & z_r = r/N_z \\ p = 0,1,2,...,N_x - 1, & q = 0,1,2,...,N_y - 1, & r = 0,1,2,...,N_z - 1 \\ \Delta x = a/N_x, & \Delta y = b/N_y & \Delta z = c/N_z \end{cases}$$

Shannon sampling:
$$d_{hkl} \ge d_{\min} = \frac{\lambda}{2\sin\theta_{\max}}$$
 and $\max(\Delta x, \Delta y, \Delta z) \lesssim \frac{1}{2}d_{\min}$

Fourier Analysis

$$F_{hkl} = \frac{V_{cell}}{N_{x}N_{y}N_{z}} \sum_{p=0}^{N_{x}-1} \sum_{p=0}^{N_{y}-1} \sum_{r=0}^{N_{z}-1} \rho(x_{p}, y_{q}, z_{r}) \exp\left[+2\pi i \left(hx_{p} + ky_{q} + lz_{r}\right)\right]$$

Shannon sampling: $d_{hkl} \ge d_{\min} \ge 2 \max(\Delta x, \Delta y, \Delta z) = 2 \max(a/N_x, b/N_y, c/N_z)$

Structure factor amplitudes and phases by numerical Fourier inversion of a grid density

Fourier Analysis

$$F_{hkl} = \frac{V_{\text{cell}}}{N_{x}N_{y}N_{z}} \sum_{p=0}^{N_{x}-1} \sum_{q=0}^{N_{y}-1} \sum_{r=0}^{N_{z}-1} \rho(x_{p}, y_{q}, z_{r}) \exp\left[+2\pi i \left(hx_{p} + ky_{q} + lz_{r}\right)\right]$$

$$F_{hkl} = |F_{hkl}| e^{i\varphi_{hkl}} = |F_{hkl}| (\cos\varphi_{hkl} + i\sin\varphi_{hkl}) = A_{hkl} + iB_{hkl}$$

$$\begin{cases} A_{hkl} = \frac{V_{\text{cell}}}{N_{x}N_{y}N_{z}} \sum_{p=0}^{N_{x}-1} \sum_{q=0}^{N_{y}-1} \sum_{r=0}^{N_{z}-1} \rho(x_{p}, y_{q}, z_{r}) \cos\left[+2\pi(hx_{p} + ky_{q} + lz_{r})\right] \\ B_{hkl} = \frac{V_{\text{cell}}}{N_{x}N_{y}N_{z}} \sum_{p=0}^{N_{x}-1} \sum_{q=0}^{N_{y}-1} \sum_{r=0}^{N_{z}-1} \rho(x_{p}, y_{q}, z_{r}) \sin\left[+2\pi(hx_{p} + ky_{q} + lz_{r})\right] \end{cases}$$

$$B_{hkl} = \frac{V_{\text{cell}}}{N_{x}N_{y}N_{z}} \sum_{p=0}^{N_{x}-1} \sum_{q=0}^{N_{y}-1} \sum_{r=0}^{N_{z}-1} \rho(x_{p}, y_{q}, z_{r}) \sin\left[+2\pi(hx_{p} + ky_{q} + lz_{r})\right]$$

$$\begin{cases} |F_{hkl}| = \sqrt{A_{hkl}^2 + B_{hkl}^2} \\ \varphi_{hkl} = \tan^{-1} \left(\frac{B_{hkl}}{A_{hkl}}\right) \end{cases}$$

Shannon sampling: $d_{hkl} \ge d_{\min} \ge 2 \max(\Delta x, \Delta y, \Delta z) = 2 \max(a/N_x, b/N_y, c/N_z)$

Shannon sampling

Reciprocal lattice:
$$\max \left| \mathbf{h}_{j} \right| = \frac{1}{d_{\min}} = 2 \left(\frac{\sin \theta_{\max}}{\lambda} \right), \quad j = 1, 2, ..., n$$

Density grid:
$$\min \left| \mathbf{r}_{j+1} - \mathbf{r}_{j} \right| = \frac{d_{\min}}{2} = \frac{\lambda}{4 \sin \theta_{\max}}, \quad j = 0, 1, ..., 2n - 1$$

n points in **h**-space \Leftrightarrow 2*n* points in **r**-space

<u>Claude E. Shannon</u>, "Communication in the presence of noise", <u>Proc. Institute of Radio Engineers</u>, vol. **37**, no. 1, pp. 10–21, (Jan. 1949). <u>Reprint as classic paper in: Proc. IEEE, vol. **86**, no. 2, (Feb. 1998)</u>

 $F_{hkl} \stackrel{\text{FFT}}{\rightleftharpoons} \rho(x,y,z)$

Basic principle of the FFT A sum of N terms can be decomposed into two sums of N/2 terms.

The projection of a unit-cell scattering density distribution onto the a axis is given by Fourier transformation of the axial structure factors,

$$\begin{split} \rho(x) &= \mathcal{F} \Big[F_{h \, 0 \, 0} \Big] \\ &= \frac{1}{a} \sum_{h=0}^{N_h - 1} F_{h \, 0 \, 0} \exp \left(-2\pi i h x \right) \\ &= \frac{1}{a} \sum_{h=0}^{(N_h / 2) - 1} F_{2h \, 0 \, 0} \exp \Big[-2\pi i (2h) x \Big] + \frac{1}{a} \sum_{h=0}^{(N_h / 2) - 1} F_{(2h+1) \, 0 \, 0} \exp \Big[-2\pi i (2h+1) x \Big] \\ &= \frac{1}{a} \sum_{h=0}^{(N_h / 2) - 1} F_{2h \, 0 \, 0} \exp \Big[-2\pi i (2h) x \Big] + \frac{1}{a} \exp \left(-2\pi i x \right) \sum_{h=0}^{(N_h / 2) - 1} F_{(2h+1) \, 0 \, 0} \exp \Big[-2\pi i (2h) x \Big]. \end{split}$$

Thus $\exp[-2\pi i(2h)x]$ needs be evaluated only $N_h/2$ times but can be used N_h times.

Similarly, the axial structure factors are given by Fourier inversion of the one-dimensional projected density,

$$F_{h00} = \mathcal{F}^{-1}[\rho(x)]$$

$$= a \sum_{n=0}^{N_x - 1} \rho(x_n) \exp(+2\pi i h x_n)$$

$$= a \sum_{n=0}^{N_x - 1} \rho(n/N_x) \exp(2\pi i h n/N_x)$$

$$= a \sum_{n=0}^{(N_x / 2) - 1} \rho\left(\frac{2n}{N_x}\right) \exp[2\pi i h(2n)/N_x] + a \sum_{n=0}^{(N_x / 2) - 1} \rho\left(\frac{2n + 1}{N_x}\right) \exp[2\pi i h(2n + 1)/N_x]$$

$$= a \sum_{n=0}^{(N_x / 2) - 1} \rho\left(\frac{2n}{N_x}\right) \exp[2\pi i h(2n)/N_x] + a \exp(+2\pi i h) \sum_{n=0}^{(N_x / 2) - 1} \rho\left(\frac{2n + 1}{N_x}\right) \exp[2\pi i h(2n)/N_x],$$

and $\exp[2\pi i h(2n)/N_x]$ needs be evaluated only $N_x/2$ times but can be used N_x times.

Basic principle of the FFT (cont'd)

- Subdivision of a sum of N terms into separate even-index and odd-index sums of N/2 terms can be repeated recursively.
- Each of the sums of N/2 terms can be subdivided into sums of N/4 terms over even-index and odd-index terms, and the process of subdivision can be continued until finally only two-term sums remain to be summed.
- The net effect of economies in evaluations of $e^{i\theta}$ by subdivision in FFT algorithms is a reduction of the size of a calculation for N data points from order N^2 to order $N \log_2 N$. As shown in the table below, this represents for large N an enormous reduction.
- Depending on the factorability of N, subdivisions into other than two sums of N/2 terms indexed by 2n and 2n+1, such as three sums of N/3 terms indexed by 3n, 3n+1, and 3n+2, are also possible.
- After the advent of high-speed digital electronic computing, the invention of the Cooley-Tukey FFT algorithm (Cooley and Tukey, 1965) made large-scale Fourier transform calculations important and commonplace in many, many areas of science and engineering.
- The *N*-factorization/divide-and-conquer principle for series evaluation had in fact been discovered by Gauss (1777-1855), but its practical exploitation had to await the appearance of fast computers.

Basic principle of the FFT (cont'd)

The net effect of the computational economies in FFT algorithms is a reduction of the size of the calculation from order N^2 to order $N \log_2 N$.

N	N	N^2	$N \log_2 N$
1	20	1	1
2	21	4	2
4	2^2	16	8
8	23	64	24
:			
1,024	210	$104,856 \approx 10^5$	$10,240 \approx 10^4$
2,048	211		
4,096	212		
8,192	213		
16,383	214		
32,768	215	$1,073,741,824 \approx 10^9$	$491,520 \approx 0.5 \times 10^6$
:	•		

The unit cell scattering density distribution $\rho(\mathbf{r}) = \rho(x,y,z)$ and the crystal structure factors $F_{\mathbf{h}} = F_{hkl}$ as atomic summations

$$\rho(\mathbf{r}) = \sum_{a=1}^{N} \rho_{a}(\mathbf{r} - \mathbf{r}_{a}) = \sum_{a=1}^{N} \rho_{a}(\mathbf{r}) * \delta(\mathbf{r} - \mathbf{r}_{a})$$

$$F_{\mathbf{h}} = \mathcal{F}^{-1} \Big[\rho(\mathbf{r}) \Big]$$

$$= \mathcal{F}^{-1} \Big[\sum_{a=1}^{N} \rho_{a}(\mathbf{r} - \mathbf{r}_{a}) \Big]$$

$$= \sum_{a=1}^{N} \mathcal{F}^{-1} \Big[\rho_{a}(\mathbf{r} - \mathbf{r}_{a}) \Big]$$

$$= \sum_{a=1}^{N} \mathcal{F}^{-1} \Big[\rho_{a}(\mathbf{r}) * \delta(\mathbf{r} - \mathbf{r}_{a}) \Big]$$

$$F_{\mathbf{h}} = \sum_{a=1}^{N} \mathcal{F}^{-1} \Big[\rho_{a}(\mathbf{r}) \Big] \mathcal{F}^{-1} \Big[\delta(\mathbf{r} - \mathbf{r}_{a}) \Big]$$

$$\mathcal{F}^{-1} \Big[\rho_{a}(\mathbf{r}) \Big] = f_{a}(\mathbf{h})$$

$$\mathcal{F}^{-1} \Big[\delta(\mathbf{r} - \mathbf{r}_{a}) \Big] = \exp(2\pi i \mathbf{h} \cdot \mathbf{r}_{a})$$

$$F_{\mathbf{h}} = \sum_{a=1}^{N} f_{a}(\mathbf{h}) \exp(2\pi i \mathbf{h} \cdot \mathbf{r}_{a})$$

$$\delta_{ij} = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

The Dirac Delta Function

$$\delta(x-x_0)=0, \quad \forall x\neq x_0$$

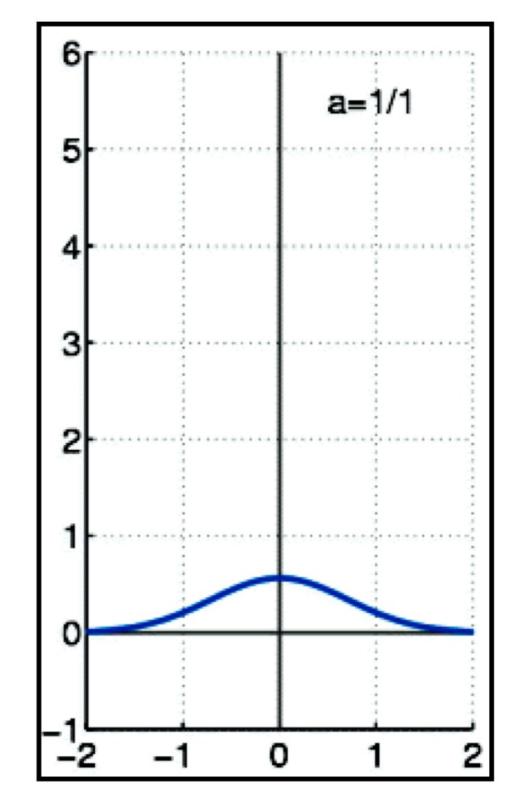
$$\int_{-\infty}^{+\infty} \delta(x - x_0) \mathrm{d}x = 1$$

$$\int_{-\infty}^{+\infty} f(x)\delta(x-x_0) dx = f(x_0)$$

$$\int_{x_0-\varepsilon}^{x_0+\varepsilon} \delta(x-x_0) dx = 1, \qquad \varepsilon > 0$$

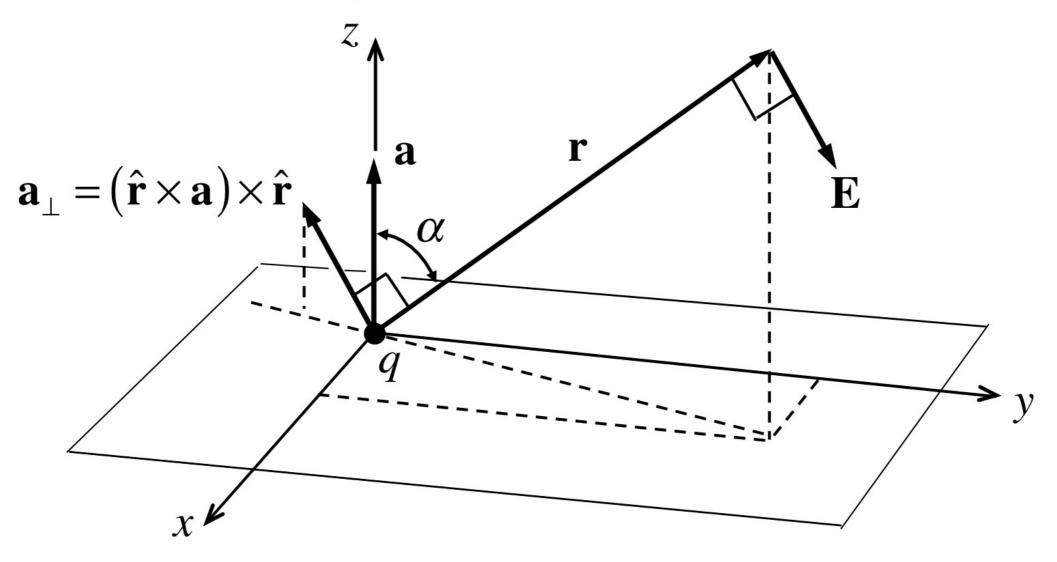
$$\int_{x_0 - \varepsilon}^{x_0 + \varepsilon} f(x) \delta(x - x_0) dx = f(x_0), \quad \varepsilon > 0$$

$$\delta(x) = \lim_{\sigma \to 0} \left\{ \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x}{\sigma}\right)^2\right] \right\}$$



$$\delta(x) = \lim_{\sigma \to 0} \left\{ \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{x}{\sigma} \right)^2 \right] \right\}$$

Electric field **E** at a point at **r** from a charge **q** that experiences an acceleration **a**



$$\mathbf{E} = -\frac{q}{c^2 r} (\hat{\mathbf{r}} \times \mathbf{a}) \times \hat{\mathbf{r}} , \qquad \hat{\mathbf{r}} = \frac{\mathbf{r}}{|\mathbf{r}|} , \qquad |\mathbf{r}| = r$$

$$E = -\frac{q}{c^2 r} a \sin \alpha , \qquad E = |\mathbf{E}| , \qquad a = |\mathbf{a}|$$

X-ray scattering by a free electron at rest (Gaussian cgs units)

driven harmonic oscillator driving force

Coulombic em $\mathbf{F} = q\mathbf{E} = q_e\mathbf{E} = -e\mathbf{E}_0 e^{i\omega t} = -e\mathbf{E}_0 \left[\cos(\omega t) + i\sin(\omega t)\right]$ X-ray

Newton's second law of motion
$$\mathbf{F} = m\mathbf{a} = m_{\rm e} \frac{\mathrm{d}^2 \mathbf{x}}{\mathrm{d}t^2}$$

$$m\mathbf{a} = q\mathbf{E}$$

$$m_{\rm e}\mathbf{a} = -e\mathbf{E}_0 \,\mathrm{e}^{i\boldsymbol{\omega}t}$$

$$\mathbf{a} = \frac{-e\mathbf{E}_0}{m_e} e^{i\omega t} = \mathbf{a}_0 e^{i\omega t}, \qquad \mathbf{a}_0 = \frac{-e\mathbf{E}_0}{m_e}$$

$$\mathbf{a}_0 = \frac{-e\mathbf{E}_0}{m_{\rm e}}$$

em radiation from an accelerated charge
$$\mathcal{E} = -\frac{q}{c^2 r} \mathbf{a}_{\perp} , \qquad |\mathcal{E}| = -\frac{q}{c^2 r} |\mathbf{a}| \sin \alpha , \qquad \alpha = \measuredangle \mathbf{a}, \mathbf{r}$$

$$\mathcal{E} = -\frac{q}{c^2 r} (\hat{\mathbf{r}} \times \mathbf{a}) \times \hat{\mathbf{r}} = -\frac{q}{c^2 r} \left(\frac{\mathbf{r}}{r} \times \mathbf{a}\right) \times \frac{\mathbf{r}}{r}$$

plane wave

$$\mathcal{E}_0 = -\frac{q_e}{c^2 r} \mathbf{a}_0 = -\frac{-e}{c^2 r} \left(\frac{-e \mathbf{E}_0}{m_e} \right) = -\left(\frac{e^2}{m_e c^2} \right) \frac{\mathbf{E}_0}{r} = -r_e \frac{\mathbf{E}_0}{r}$$

scattered X-ray spherical wave

Amplitude at r in the equatorial plane perpendicular to the polarization direction

X-ray scattering by a free electron, at rest or moving uniformly at a nonrelativistic velocity

(Gaussian cgs units)

$$\begin{cases} \mathbf{F}_{\text{Coulomb}} = q\mathbf{E} \\ \mathbf{F}_{\text{Newton}} = m\mathbf{a} \end{cases}$$

$$m\mathbf{a} = -e\mathbf{E}_0 e^{i\omega t}$$
Newton's em
Coulombic
force driving
force
$$\mathbf{F} = m\mathbf{a}$$

$$\mathbf{a} = -\frac{e}{m}\mathbf{E}_0 e^{i\omega t}$$

$$\mathcal{E} = -\frac{q \mathbf{a}_{\perp}}{c^2 r} = -\frac{q}{c^2 r} (\hat{\mathbf{r}} \times \mathbf{a}) \times \hat{\mathbf{r}} , \qquad \hat{\mathbf{r}} = \frac{\mathbf{r}}{|\mathbf{r}|} , \qquad |\mathcal{E}| = -\frac{q}{c^2 r} |\mathbf{a}| \sin \alpha , \qquad \alpha = \measuredangle \mathbf{a}, \mathbf{r}$$

$$\mathcal{E} = -\frac{q \mathbf{a}}{c^2 r} = -\left(\frac{-e}{c^2 r}\right) \left(\frac{-e \mathbf{E}_0}{m}\right) e^{i\omega t} = -\underbrace{\left(\frac{e^2}{mc^2}\right)}_{\text{Thomson scattering length}} \underbrace{\mathbf{E}_0}_{\text{o}} e^{i\omega t} = \mathcal{E}_0 e^{i\omega t}$$

X-ray scattering by a free electron (Gaussian cgs units)

$$\underbrace{\mathcal{E}_{0}}_{\substack{\text{scattered} \\ \text{X-ray} \\ \text{wave}}} = -\left(\frac{e^{2}}{mc^{2}}\right) \underbrace{\frac{\mathbf{E}_{0}}{r}}_{e^{i\omega t}} = -r_{e} \underbrace{\frac{\mathbf{E}_{0}}{r}}_{e^{i\omega t}} = -\frac{r_{e}}{r} \underbrace{\mathbf{E}_{0}}_{e^{i\omega t}} = -\frac{r_{e}}{r} \underbrace{\mathbf{E}_{0}}_{e^{i\omega t}}$$

$$r_{\rm e} = \left(\frac{e^2}{mc^2}\right)$$
classical electron radius

$$\frac{\text{charge}^2}{\text{mass} \cdot \text{velocity}^2} = \frac{\text{charge}^2}{\text{mass} \cdot \text{distance}^2 \cdot \text{time}^{-2}} = \frac{\text{force}}{\text{mass} \cdot \text{time}^{-2}} = \frac{\text{acceleration}}{\text{time}^{-2}} = \frac{\text{distance}}{\text{time}^{-2}}$$

Classical electron radius

Electrostatic potential energy

$$E = q\phi(r) = q(q/r) = e^{2}/r_{e}$$
Relativistic mass - energy
$$r_{e} = \frac{e^{2}}{m_{e}c^{2}}$$

$$E = m_{\rm e}c^2$$

$$r_{\rm e} = \frac{e^2}{m_{\rm e}c^2}$$

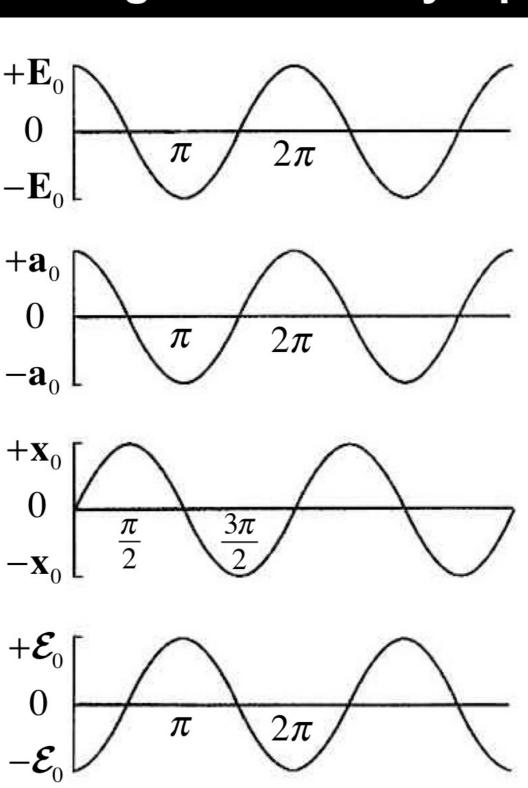
Phase reversal upon scattering of an electromagnetic wave by a point charge

incident em wave

charge acceleration

charge displacement

scattered em wave



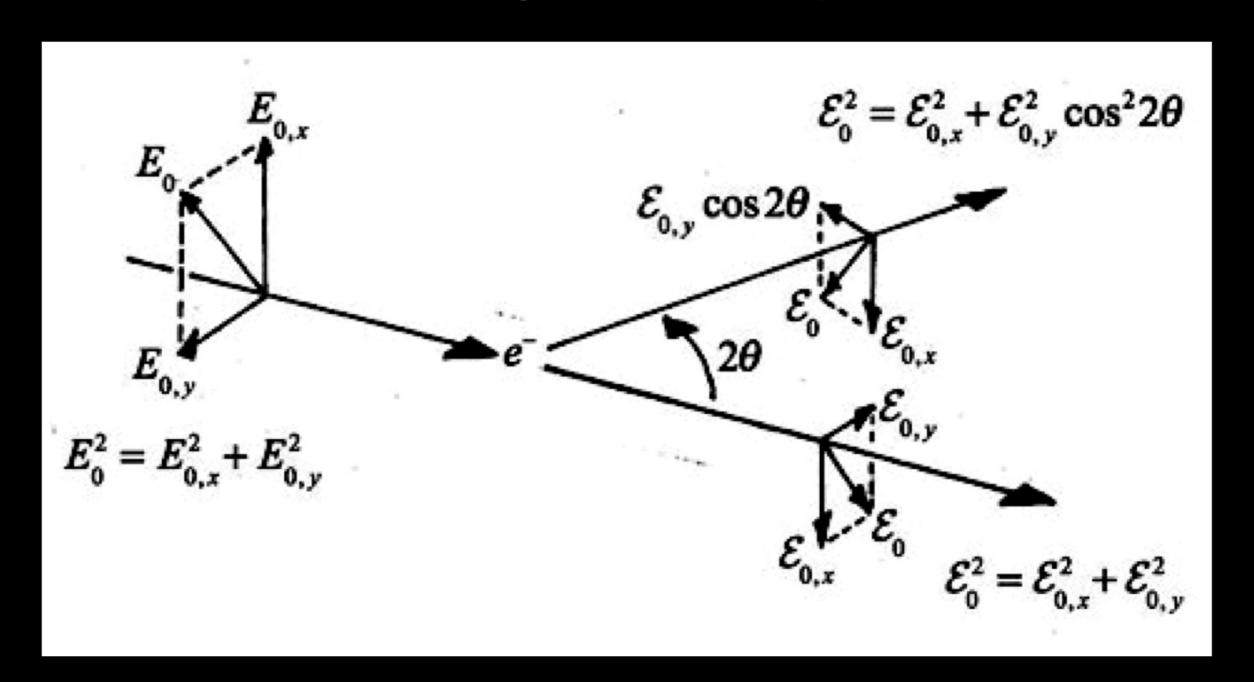
$$\begin{cases} \boldsymbol{\varphi}_{\mathbf{E}} \\ \mathbf{E} = \mathbf{E}_0 \mathbf{e}^{i\boldsymbol{\omega}t} \end{cases}$$

$$\begin{cases} \varphi_{\mathbf{a}} = \varphi_{\mathbf{E}} \\ \mathbf{a} = \mathbf{a}_0 e^{i\omega t} \end{cases}$$

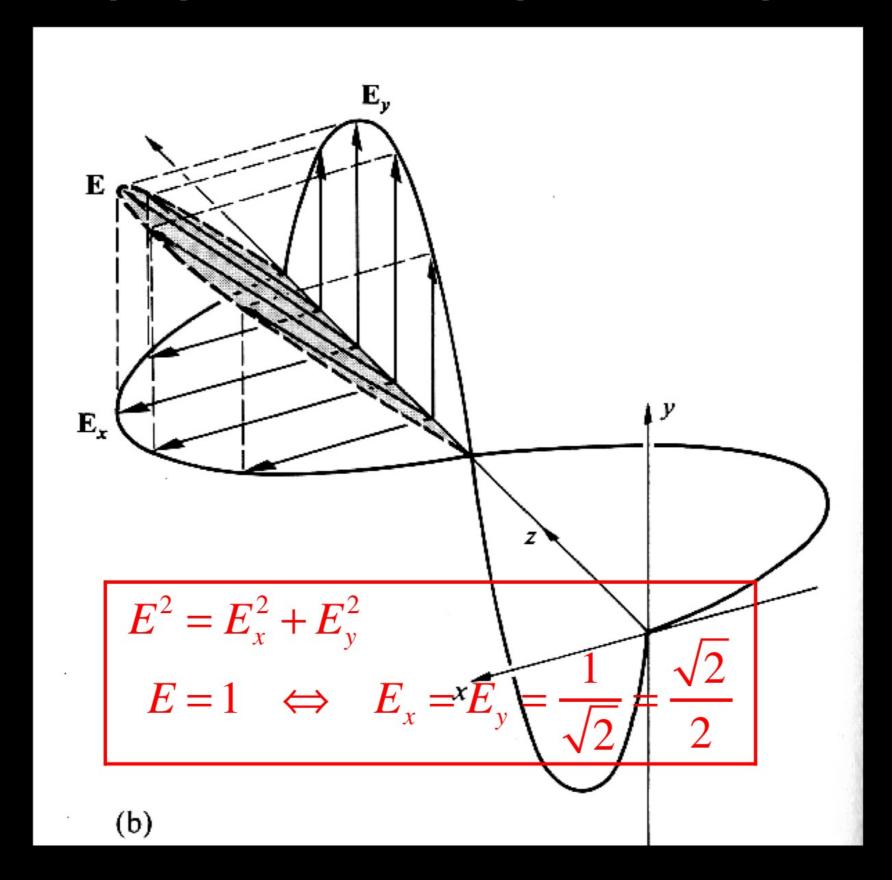
$$\begin{cases} \varphi_{\mathbf{x}} = \left(\varphi_{\mathbf{a}} - \frac{\pi}{2}\right) = \left(\varphi_{\mathbf{E}} - \frac{\pi}{2}\right) \\ \mathbf{x} = \mathbf{x}_0 \exp\left[i\left(\omega t - \frac{\pi}{2}\right)\right] \end{cases}$$

$$\begin{cases} \varphi_{\mathcal{E}} = \left(\varphi_{\mathbf{X}} - \frac{\pi}{2}\right) = \left(\varphi_{\mathbf{E}} - \pi\right) \\ \mathcal{E} = \mathcal{E}_0 \exp\left[i(\omega t - \pi)\right] \end{cases}$$

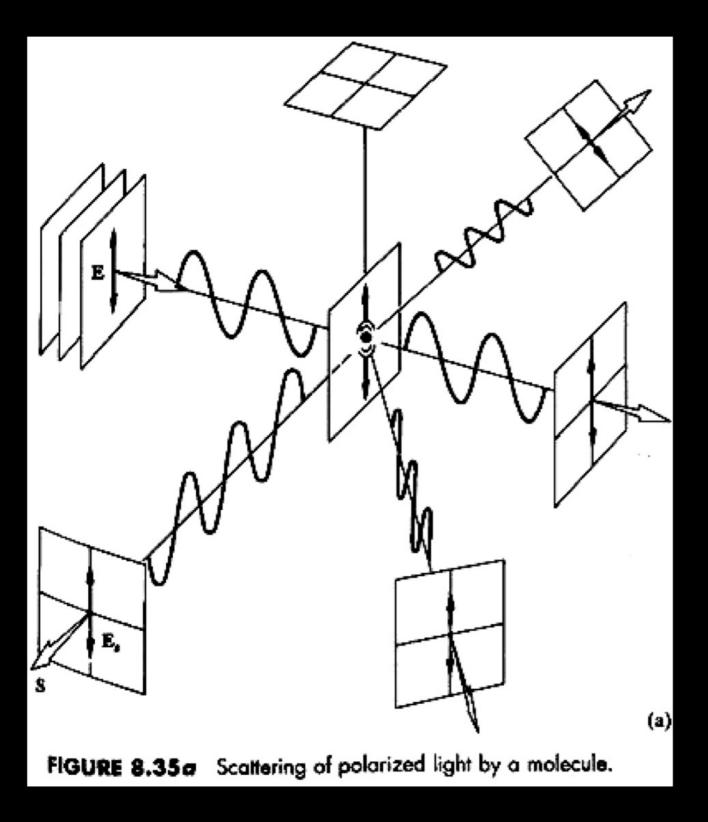
Scattering of a linearly polarized beam with an arbitrary direction of polarization

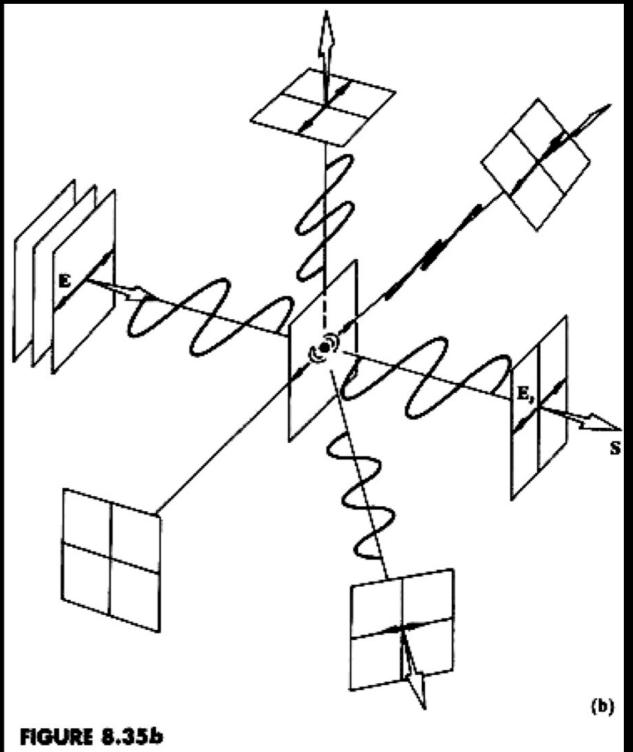


Resolved perpendicular components of polarization

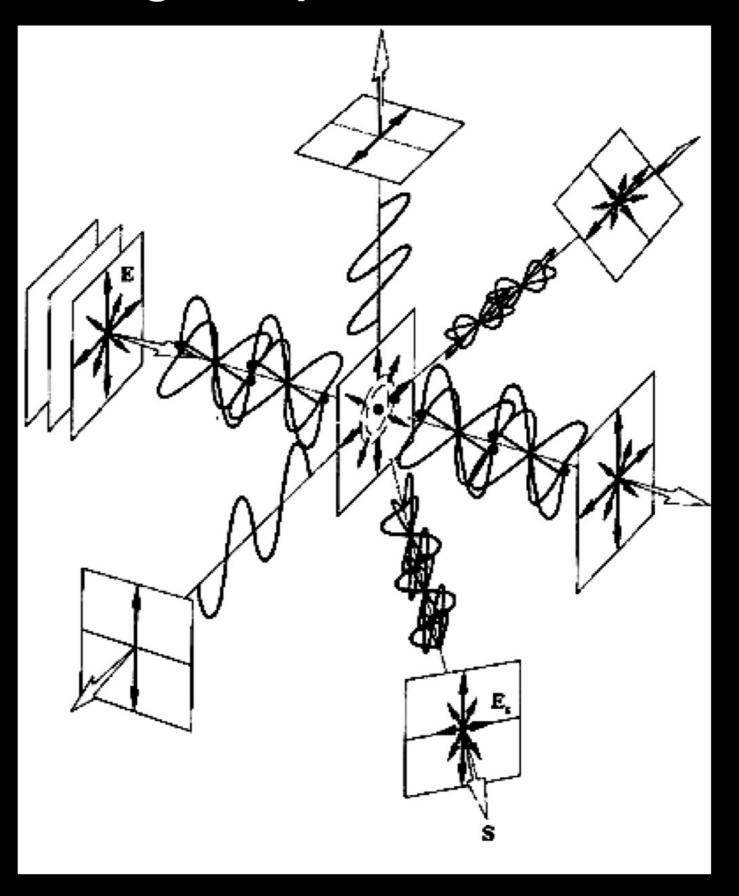


Scattering of polarized em radiation





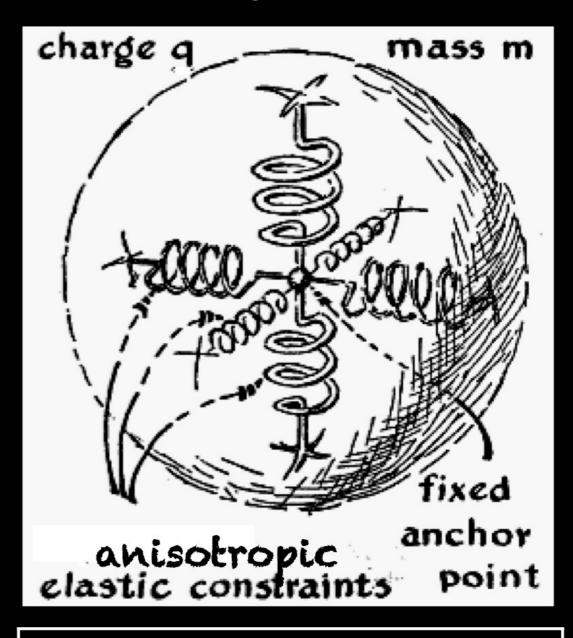
Scattering of unpolarized em radiation



Mechanical models for electron oscillators

Spheres of uniform charge density with total charge q and mass m





Classical electron radius

Electrostatic potential energy

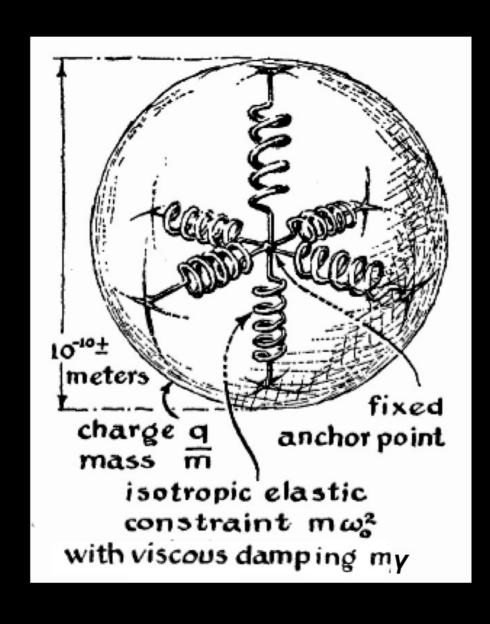
$$E = q\phi(r) = q(q/r) = e^2/r_e$$

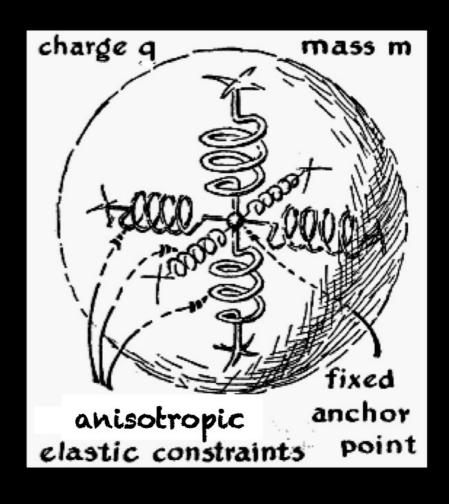
Relativistic mass - energy

$$E = m_{\rm e}c^2$$

 $r_{\rm e} = \frac{e}{m_{\rm e}c^2}$

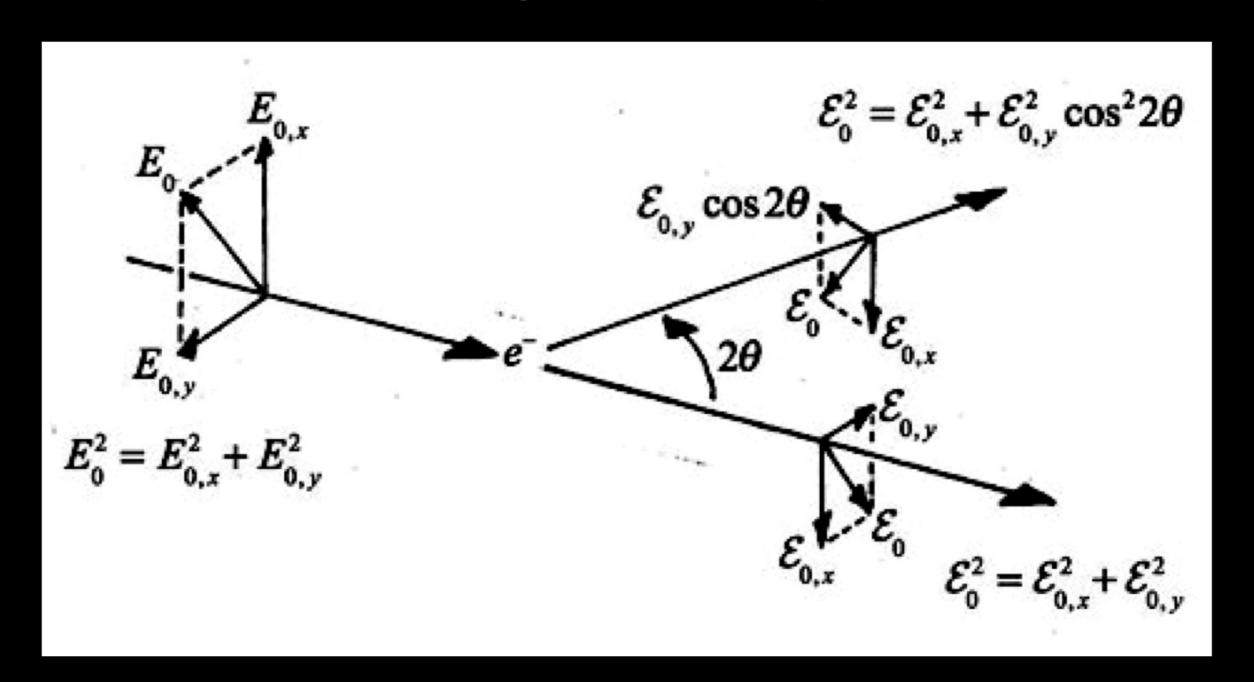
Mechanical models for 3-D oscillators



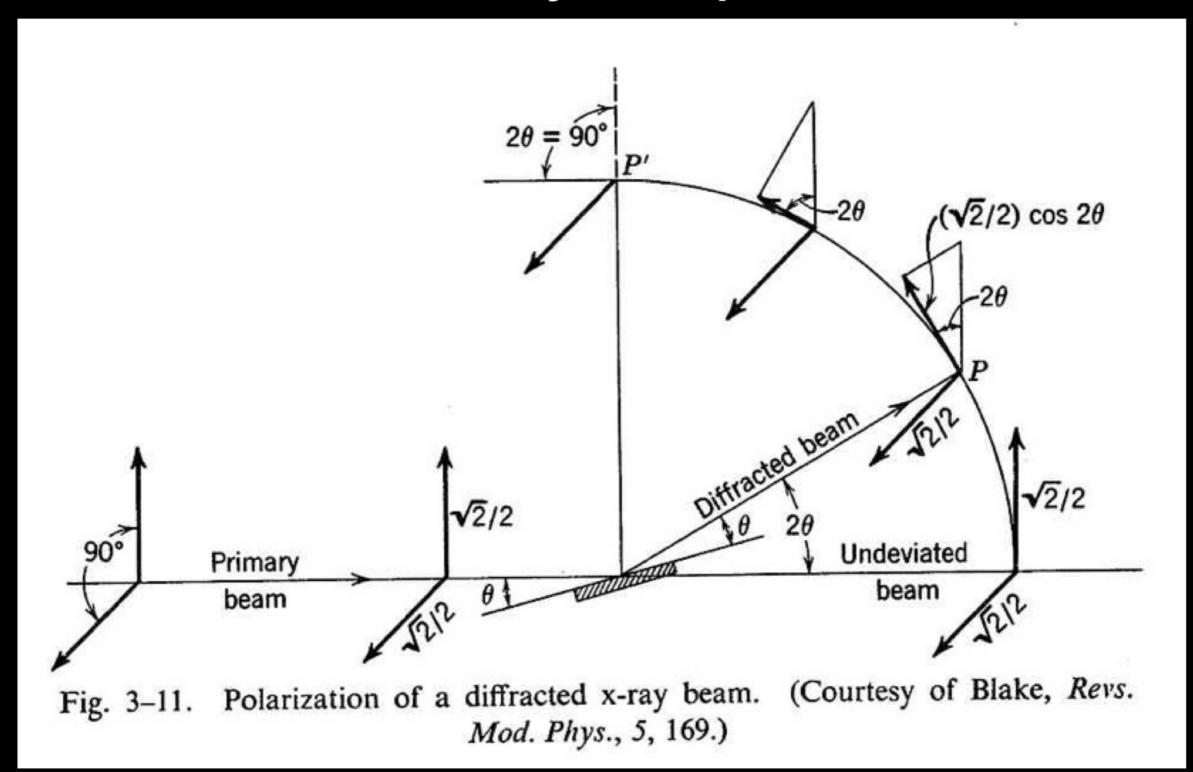


If a electron is driven to oscillate by an *unpolarized* em wave, the electron oscillations will be *three dimensional*.

Scattering of a linearly polarized beam with an arbitrary direction of polarization



Diffracted X-ray beam polarization



Any vector of unit length can be resolved into a pair of perpendicular components each of length $\sqrt{2}/2$. The component perpendicular to the equatorial plane of the incident and diffracted beams remains constant; the in-plane component varies as $\cos\left(\sqrt{2}/2\right)$

Harold P. Klug and Leroy E. Alexander (1954). X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: John Wiley.

X-ray scattering by a bound electron in a free atom

(Gaussian cgs units)

$$m\frac{\mathrm{d}^2\mathbf{x}}{\mathrm{d}t^2} = -e\mathbf{E}_0\mathrm{e}^{i\omega t} \quad -k\mathbf{x} \quad , \qquad k = m\omega_0^2 \quad \text{elastic force constant}$$

$$\underset{\text{second law force } \mathbf{F} = m\mathbf{a}}{\text{Fe}} \quad \underset{\mathbf{F} = -k\mathbf{x}}{\text{em}} \quad \mathbf{E}_0\mathrm{e}^{i\omega t} \quad -k\mathbf{x} \quad , \qquad k = m\omega_0^2 \quad \text{elastic force constant}$$

$$\begin{cases} \mathbf{x} = \mathbf{x}_0 e^{i\omega t}, & \mathbf{v} = \frac{d\mathbf{x}}{dt} = i\,\omega\mathbf{x}_0 e^{i\omega t}, & \mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{x}}{dt^2} = -\omega^2\mathbf{x}_0 e^{i\omega t} \\ -m\,\omega^2\mathbf{x}_0 e^{i\omega t} = -e\mathbf{E}_0 e^{i\omega t} - k\mathbf{x}_0 e^{i\omega t} \end{cases}$$

$$m\omega^2\mathbf{x} = e\mathbf{E} + k\mathbf{x}$$

$$\mathbf{x} = \frac{e\mathbf{E}}{m\omega^2 - k} = \frac{e\mathbf{E}}{m\left(\omega^2 - \frac{k}{m}\right)} = \frac{e\mathbf{E}_0}{m} \left(\frac{1}{\omega^2 - \omega_0^2}\right) e^{i\omega t} , \qquad \omega_0 = \sqrt{k/m}$$

$$\mathbf{a} = -\boldsymbol{\omega}^2 \mathbf{x} = -\frac{e\mathbf{E}}{m} \left(\frac{\boldsymbol{\omega}^2}{\boldsymbol{\omega}^2 - \boldsymbol{\omega}_0^2} \right)$$

$$\mathcal{E} = -\frac{q \mathbf{a}}{c^2 r} = -\left(\frac{-e}{c^2 r}\right) \frac{e \mathbf{E}}{m} \left(\frac{\boldsymbol{\omega}^2}{\boldsymbol{\omega}^2 - \boldsymbol{\omega}_0^2}\right) e^{i\boldsymbol{\omega}t} = \underbrace{\left(\frac{e^2}{mc^2}\right)}_{r_e} \frac{\mathbf{E}_0}{r} \left(\frac{\boldsymbol{\omega}^2}{\boldsymbol{\omega}^2 - \boldsymbol{\omega}_0^2}\right) e^{i\boldsymbol{\omega}t} = \mathcal{E}_0 e^{i\boldsymbol{\omega}t}$$

Resonant X-ray scattering by a bound atomic electron

(Gaussian cgs units)

X-ray scattering by a bound atomic electron is approximately the same as scattering by a free electron at rest (Gaussian cgs units)

$$\mathcal{E}_{0} = -\frac{q \mathbf{a}_{0}}{c^{2} r} = -\left(\frac{e^{2}}{m_{e} c^{2}}\right) \frac{\mathbf{E}_{0}}{r} \left(\frac{\omega^{2}}{\omega^{2} - \omega_{0}^{2} - i\gamma\omega}\right)$$
free e^{-} scattered
X-ray wave amplitude at r

bound e^- scattered X-ray wave amplitude at r

$$f_{e} = \frac{\mathcal{E}_{0} \text{(bound)}}{\mathcal{E}_{0} \text{(free)}} = \frac{\omega^{2}}{\omega^{2} - \omega_{0}^{2} - i\gamma\omega} = \frac{1}{1 - \left(\frac{\omega_{0}}{\omega}\right)^{2} - \frac{i\gamma}{\omega}}$$

$$\gamma \ll \omega \quad \Rightarrow \quad f_{\rm e} \approx \frac{1}{1 - \left(\frac{\omega_0}{\omega}\right)^2} \quad \text{undamped oscillation} \\ \omega_0 \ll \omega \quad \Rightarrow \quad f_{\rm e} \approx 1 \qquad \qquad \text{high frequency limit}$$
 free electron at rest $f_{\rm e} = 1$