Fourier transformations by numerical grid summations
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Structure factor amplitudes and phases
by numerical Fourier inversion of a grid density

Fourier Analysis
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Shannon sampling

( _ _ 1 sinf_
Reciprocal lattice: max‘hj‘ :d—:z 7 : j=12,...n
< min
. . . dmin A‘
Density grid: min|r;,, —rj‘ = > = PR j=0,1,...,2n-1
Simdo ..

n points in h-space < 2n points in r-space

Claude E. Shannon, "Communication in the presence of noise’,

Proc. Institute of Radio Engineers, vol. 37, no. 1, pp. 10-21, (Jan. 1949).

Reprint as classic paper in. Proc. IEEE, vol. 86, no. 2, (Feb. 1998)

http://en.wikipedia.org/wiki/Nyquist—-Shannon_sampling_theorem




7. Basic principle of the FFT T
>3 ) F 2 9:7"9
Fua ]tl P (x,),z) A sum of N terms can be decomposed into two sums of N/2 terms. ™ F;—l p(x y:2)

The projection of a unit-cell scattering density distribution onto the a axis is given by Fourier transformation of the
axial structure factors,

p(x): f[Fhoo]
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h=0

Thus exp[—27ri(2h x:| needs be evaluated only N, /2 times but can be used N, times.

Similarly, the axial structure factors are given by Fourier inversion of the one-dimensional projected density,
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and exp| 27ih(2n)/N, | needs be evaluated only N, /2 times butcanbe used N, times.




Basic principle of the FFT (cont’d)

e Subdivision of a sum of N terms into separate even-index and odd-index sums of N/2 terms
can be repeated recursively.

e Each of the sums of N/2 terms can be subdivided into sums of N/4 terms over even-index
and odd-index terms, and the process of subdivision can be continued until finally only two-term
sums remain to be summed.

e The net effect of economies in evaluations of ¢ by subdivision in FFT algorithms is a

reduction of the size of a calculation for N data points from order N~ to order N log, N . As
shown 1n the table below, this represents for large N an enormous reduction.

e Depending on the factorability of N , subdivisions into other than two sums of N/2 terms
indexed by 2n and 2n+1, such as three sums of N/3 terms indexed by 3n, 3n+1, and
3n+ 2, are also possible.

e After the advent of high-speed digital electronic computing, the invention of the Cooley-Tukey
FFT algorithm (Cooley and Tukey, 1965) made large-scale Fourier transform calculations

important and commonplace in many, many areas of science and engineering.

e The N-factorization/divide-and-conquer principle for series evaluation had in fact been
discovered by Gauss (1777-1855), but its practical exploitation had to await the appearance of

fast computers.




Basic principle of the FFT (cont’d)

The net effect of the computational economies in FFT algorithms 1s a
reduction of the size of the calculation from order N” to order N log, N .

N| N N* Nlog, N
[ 2° 1 1
2 2 4 2
41 27 16 3
8| 2’ 64 24
1.024 | 27 104,856 = 10° 10,240 =~ 10
2,048 27
4096 | 2°
8,192 27
16383 2™
32,768 | 2° 1,073,741,824 = 10° | 491,520 = 0.5x10°




The unit cell scattering density distribution p(r) = p(x,y,2)
and the crystal structure factors F,=F,

as atomic summations

N N

p(r)= 2 pu(r =)= X (1) #5(rr,)

F,=F"p(r)]
= Nl p(r— ra)_
= Ele “[pr-r,)
= aif‘l pu(r)*d(r-r,)]
R= X7 [p0)] F [8(r-n,)]

F [S(r —r,) |=exp(27iher, )

F = ifa(h)exp(Znih-ra)




Th_e Kronecker Delta
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The Dirac Delta Function
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Electric field E at a point at r from a charge q
that experiences an acceleration a
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X-ray scattering by a free electron at rest (Gaussian cgs units)
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X-ray scattering by a free electron,
at rest or moving uniformly at a nonrelativistic velocity

(Gaussian cgs units)
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X-ray scattering by a free electron (Gaussian cgs units)
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Phase reversal upon scattering of an
electromagnetic wave by a point charge
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Scattering of a linearly polarized beam
with an arbitrary direction of polarization

r SR« - 2 2
80 = 80,;*' SM cos 26




Resolved perpendicular components of polarization




Scattering of polarized radiation

L

FIGURE 8.35a Scattering of polarized light by a molecule.
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Scattering of unpolarized




Mechanical models for electron oscillators
Spheres of uniform charge density with total charge g and mass m

anchoy

anisotropic

anchor point | :
clastic constraints Point

isotropic elastic

constraint m woz Classical electronradius

- . : Electrostatic potential energy |
with viscous damping my E=q¢(r)=q(q/r)=¢/r ¢’
> ==
Relativistic mass - energy g m.c’
E=mc’ )

John Strong (1958). Concepts of Classical Optics. San Francisco: W.H. Freeman & Co.



Mechanical models for 3-D oscillators

ami.so&ropi.c anchor
mass m clastic constraints Point
isotropic elastic
constraint mwj
with viscous damping my

anchor point

If a electron is driven to oscillate by an unpolarized wave,
the electron oscillations will be three dimensional.




Scattering of a linearly polarized beam
with an arbitrary direction of polarization

r SR« - 2 2
80 = 80,;*' SM cos 26




Diffracted X-ray beam polarization

—20 (V2/2) cos 26

v2/2

‘90" Primary , { Undeviated
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beam 6 /e beam
/ (O o

Fig. 3-11. Polarization of a diffracted x-ray beam. (Courtesy of Blake, Revs.
Mod. Phys., 5, 169.)

Any vector of unit length can be resolved into a pair of perpendicular components each of length \/5/2 :
The component perpendicular to the equatorial plane of the incident and diffracted beams remains constant;

the in-plane component varies as cos (ﬁ/z)

Harold P. Klug and Leroy E. Alexander (1954). X-Ray Diffraction Procedures for
Polycrystalline and Amorphous Materials. New York: John Wiley.




X-ray scattering by a bound electron in a free atom

(Gaussian cgs units)
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Resonant X-ray scattering by a bound atomic electron

(Gaussian cgs units)
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X-ray scattering by a bound atomic electron
Is approximately the same as scattering by a

free electron at rest (Gaussian cgs units)
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