Small Angle X-Ray Scattering as a Complementary Tool for High-Throughput Structural Studies

By Tom Grant1, Edward Snell1

1. Hauptman-Woodward Institute

Download

This resource requires you to log in before you can proceed with the download.

See also

No results found.

Published on

Abstract

Structural crystallography and nuclear magnetic resonance (NMR) spectroscopy are the predominant techniques for understanding the biological world on a molecular level. Crystallography is constrained by the ability to form a crystal that diffracts well and NMR is constrained to smaller proteins. Although powerful techniques, they leave many soluble, purified structurally uncharacterized protein samples. Small angle X-ray scattering (SAXS) is a solution technique that provides data on the size and multiple conformations of a sample, and can be used to reconstruct a low-resolution molecular envelope of a macromolecule. In this study, SAXS has been used in a high-throughput manner on a subset of 28 proteins, where structural information is available from crystallographic and/or NMR techniques. These crystallographic and NMR structures were used to validate the accuracy of molecular envelopes reconstructed from SAXS data on a statistical level, to compare and highlight complementary structural information that SAXS provides, and to leverage biological information derived by crystallographers and spectroscopists from their structures. All the ab initio molecular envelopes calculated from the SAXS data agree well with the available structural information. SAXS is a powerful albeit low-resolution technique that can provide additional structural information in a high-throughput and complementary manner to improve the functional interpretation of high-resolution structures.

Acknowledgments

Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program (P41RR001209) and the National Institute of General Medical Sciences. The authors acknowledge those responsible for the structural information they have used from the PDB and Dr. George DeTitta for access to the high-throughput screening laboratory and remnants of samples left after crystallization screening. The referees are acknowledged for useful comments. This work was supported in part by NIH grants R01 GM088396 to EHS, and Protein Structure Initiative grants U54 GM074958 and U54 GM094597 to GTM, and U54 GM074899 to George DeTitta. Dr. E. Lattman is acknowledged for useful discussions.

References

1. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res 2000, 28, 235–242. 2. Watson, J. D.; Crick, F. H. Nature 1953, 171, 737–738. 3. Hodgkin, D. C.; Kamper, J.; Lindsey, J.; MacKay, M.; Pickworth, J.; Robertson, J. H.; Shoemaker, C. B.; White, J. G.; Prosen, R. J.; Trueblood, K. N. Proc R Soc Lond A 1957, 242, 228–263. 4. Deisenhofer, J.; Epp, O.; Miki, K.; Huber, R.; Michel, H. J Mol Biol 1984, 180, 385–398. 5. Abrahams, J. P.; Leslie, A. G.; Lutter, R.; Walker, J. E. Nature 1994, 370, 621–628. 6. Doyle, D. A.; Morais Cabral, J.; Pfuetzner, R. A.; Kuo, A.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; MacKinnon, R. Science 1998, 280, 69–77. 7. Cramer, P.; Bushnell, D. A.; Kornberg, R. D. Science 2001, 292, 1863–1876. 8. Schlu¨nzen, F.; Hansen, H. A. S.; Thygesen, J.; Bennett, W.S.; Volkmann, N.; Harms, J.; Bartels, H.; Krumbholz, S.; Levin, I.; Zaytzev-Bashan, A.; Geva, M.; Weinstein, S.; Agmon, R. Sharon, R.; Dribin, A.; Maltz, E.; Peretz, M.; Weinrich, V.; Franceschi, F.; Bo¨ddeker, N.; Morlang, S.; Berkovitch-Yellin, Z.; Yonath, A.; Sagi, I. Biochem Cell Biol 1995, 73, 739–749. 9. Chen, L.; Oughtred, R.; Berman, H. M.; Westbrook, J. Bioinformatics 2004, 20, 2860–2862. 10. Luft, J. R.; Collins, R. J.; Fehrman, N. A.; Lauricella, A. M.; Veatch, C. K.; DeTitta, G. T. J Struct Biol 2003, 142, 170–179. 11. Chayen, N. E.; Shaw Stewart, P. D.; Blow, D. M. J Cryst Growth 1992, 122, 176–180. 12. Putnam, C. D.; Hammel, M.; Hura, G. L.; Tainer, J. A. Q Rev Biophys 2007, 40, 191–285. 13. Xiao, R.; Anderson, S.; Aramini, J.; Belote, R.; Buchwald, W. A.; Ciccosanti, C.; Conover, K.; Everett, J. K.; Hamilton, K.; Huang, Y. J.; Janjua, H.; Jiang, M.; Kornhaber, G. J.; Lee, D. Y.; Locke, J. Y.; Ma, L. C.; Maglaqui, M.; Mao, L.; Mitra, S.; Patel, D.; Rossi, P.; Sahdev, S.; Sharma, S.; Shastry, R.; Swapna, G. V.; Tong, S. N.; Wang, D.; Wang, H.; Zhao, L.; Montelione, G. T.; Acton, T. B. J Struct Biol 2010, 172, 21–33. 14. Acton, T. B.; Gunsalus, K. C.; Xiao, R.; Ma, L. C.; Aramini, J.; Baran, M. C.; Chiang, Y. W.; Climent, T.; Cooper, B.; Denissova, N. G.; Douglas, S. M.; Everett, J. K.; Ho, C. K.; Macapagal, D.; Rajan, P. K.; Shastry, R.; Shih, L. Y.; Swapna, G. V.; Wilson, M.; Wu, M.; Gerstein, M.; Inouye, M.; Hunt, J. F.; Montelione, G. T. Methods Enzymol 2005, 394, 210–243. 15. Acton, T. B.; Xiao, R.; Anderson, S.; Aramini, J. M.; Buchwald, W.; Ciccosanti, C.; Conover, K.; Everett, J. K.; Hamilton, K.; Huang, Y. J.; Janjua, H.; Kornhaber, G. J.; Lau, J.; Lee, D. Y.; Liu, G.; Maglaqui, M.; Ma, L.-C.; Mao, L.; Patel, D.; Rossi, P.; Sahdev, S.; Sharma, S.; Shastry, R.; Swapna, G. V. T.; Tang, Y.; Tong, S. N.; Wang, D.; Wang, H.; Zhao, L.; Montelione, G. T. Methods Enzymol 2011, 493, 21–60. 16. Forouhar, F.; Lew, S.; Seetharaman, J.; Sahdev, S.; Xiao, R.; Ciccosanti, C.; Maglaqui, M.; Everett, J. K.; Nair, R.; Acton, T. B.; Rost, B.; Montelione, G. T.; Tong, L.; Hunt, J. F. 2009, DOI:10.2210/pdb3hz7/pdb. 17. Seetharaman, J.; Su, M.; Wang, H.; Foote, E. L.; Mao, L.; Nair, R.; Rost, B.; Acton, T. B.; Xiao, R.; Everett, J. K.; Montelione, G. T.; Tong, L.; Hunt, J. F. 2009, DOI:10.2210/pdb3h9w/pdb. 18. Forouhar, F.; Lew, S.; Seetharaman, J.; Sahdev, S.; Xiao, R.; Ciccosanti, C.; Lee, D.; Everett, J. K.; Nair, R.; Acton, T. B.; Rost, B.; Montelione, G. T.; Tong, L.; Hunt, J. F. 2010, DOI:10.2210/ pdb3lmf/pdb. 19. Vorobiev, S.; Neely, H.; Seetharaman, J.; Wang, D.; Ciccosanti, C.; Mao, L.; Xiao, R.; Acton, T. B.; Everett, J. K.; Montelione, G. T.; Tong, L.; Hunt, J. F. 2010, DOI:10.2210/pdb3mjq/pdb. 20. Forouhar, F.; Abashidze, M.; Seetharaman, J.; Mao, M.; Xiao, R.; Ciccosanti, C.; Lee, D.; Everett, J. K.; Nair, R.; Acton, T. B.; Rost, B.; Montelione, G. T.; Tong, L.; Hunt, J. F. 2010, DOI:10.2210/ pdb3mfx/pdb. 21. Seetharaman, J.; Lew, S.; Wang, D.; Janjua, H.; Cunningham, K.; Owens, L.; Xiao, R.; Liu, J.; Baran, M. C.; Acton, T. B.; Montelione, G. T.; Tong, L.; Hunt, J. F. 2010, DOI:10.2210/pdb3lyy/ pdb. 22. Seetharaman, J.; Chen, Y.; Wang, D.; Janjua, H.; Cunningham, K.; Owens, L.; Xiao, R.; Liu, J.; Baran, M. C.; Acton, T. B.;Montelione, G. T.; Tong, L.; Hunt, J. F. 2010, DOI:10.2210/pdb3mjq/pdb. 23. Seetharaman, J.; Abashidze, M.; Forouhar, F.; Janjua, H.; Xiao, R.; Ciccosanti, C.; Foote, E. L.; Acton, T. B.; Rost, B.; Montelione, G. T.; Hunt, J. F.; Tong, L. 2009, DOI:10.2210/pdb3i24/pdb. 24. Kuzin, A.; Chen, Y.; Seetharaman, J.; Mao, M.; Xiao, R.; Ciccosanti, C.; Foote, E. L.; Wang, H.; Everett, J. K.; Nair, R.; Acton, T. B.; Rost, B.; Montelione, G. T.; Tong, L.; Hunt, J. F. 2009, DOI:10.2210/pdb3icl/pdb. 25. Vorobiev, S.; Neely, H.; Seetharaman, J.; Wang, H.; Foote, E. L.; Ciccosanti, C.; Sahdev, S.; Xiao, R.; Acton, T. B.; Montelione, G. T.; Tong, L.; Hunt, J. F. 2009, DOI:10.2210/pdb3ign/pdb. 26. Kuzin, A.; Su, M.; Seetharaman, J.; Sahdev, S.; Xiao, R.; Ciccosanti, C.; Maglaqui, M.; Everett, J. K.; Nair, R.; Acton, T. B.; Rost, B.; Montelione, G. T.; Hunt, J. F.; Tong, L. 2009, DOI:10.2210/pdb3ha2/pdb. 27. Kuzin, A.; Scott, L.; Forouhar, F.; Abashidze, M.; Seetharaman, J.; Mao, M.; Xiao, R.; Ciccosanti, C.; Wang, H.; Everett, J. K.; Nair, R.; Acton, T. B.; Rost, B.; Montelione, G. T.; Hunt, J. F.; Tong, L. 2010, DOI:10.2210/pdb3ljx/pdb. 28. Forouhar, F.; Neely, H.; Seetharaman, J.; Sahdev, S.; Xiao, R.; Ciccosanti, C.; Maglaqui, M.; Everett, J. K.; Nair, R.; Acton, T. B.; Rost, B.; Montelione, G. T.; Hunt, J. F.; Tong, L. 2009, DOI:10.2210/pdb3hxl/pdb. 29. Forouhar, F.; Abashidze, M.; Seetharaman, J.; Mao, M.; Xiao, R.; Ciccosanti, C.; Foote, E. L.; Belote, R. L.; Everett, J. K.; Nair, R.; Acton, T. B.; Rost, B.; Montelione, G. T.; Tong, L.; Hunt, J. F., 2010, DOI:10.2210/pdb3lrx/pdb. 30. Forouhar, F.; Abashidze, M.; Seetharaman, J.; Sahdev, S.; Xiao, R.; Foote, E. L.; Ciccosanti, C.; Belote, R. L.; Everett, J. K.; Nair, R.; Acton, T. B.; Rost, B.; Montelione, G. T.; Tong, L.; Hunt, J. F. 2010, DOI:10.2210/pdb3lyu/pdb. 31. Vorobiev, S.; Chen, Y.; Forouhar, F.; Maglaqui, M.; Ciccosanti, C.; Mao, L.; Xiao, R.; Acton, T. B.; Montelione, G. T.; Tong, L.; Hunt, J. F. 2009, DOI:10.2210/pdb3hix/pdb. 32. Liu, G.; Shastry, R.; Ciccosanti, C.; Janjua, H.; Acton, T. B.; Xiao, R.; Mao, B.; Everett, J. K.; Montelione, G. T. 2010, DOI:10.2210/pdb2kw2/pdb. 33. Liu, G.; Xiao, R.; Janjua, J.; Acton, T. B.; Mao, B.; Everett, J.; Montelione, G. T. 2010, DOI:10.2210/pdb2kvu/pdb. 34. Cort, J. R.; Ramelot, T. A.; Lee, D.; Ciccosanti, C.; Janjua, H.; Acton, T. B.; Xiao, R.; Everett, J. K.; Montelione, G. T.; Kennedy, M. A. 2010, DOI:10.2210/pdb2kvz/pdb. Small Angle X-Ray Scattering as a Complementary Tool 529 Biopolymers 35. Liu, G.; Tong, S.; Xiao, R.; Acton, T. B.; Everett, J. K.; Montelione, G. T. 2010, DOI:10.2210/pdb2l0b/pdb. 36. Liu, G.; Janjua, H.; Xiao, R.; Ciccosanti, C.; Shastry, R.; Acton, T. B.; Tong, S.; Everett, J. K.; Montelione, G. T. 2010, DOI:10.2210/pdb2kz5/pdb. 37. Lee, H.; Montelione, G. T.; Prestegard, J. H. 2009, DOI:10.2210/ pdb2kl1/pdb. 38. Cort, J.; Lee, D.; Ciccosanti, C.; Janjua, H.; Acton, T. B.; Xiao, R.; Everett, J. K.;

Tags