News

UWM researchers create first 3D movie of virus in action

A research collaboration led by the University of Wisconsin-Milwaukee has for the first time created a three-dimensional movie showing a virus preparing to infect a healthy cell.

The research has the potential to fundamentally advance our understanding of how biological processes inside the cell work. That could lead to better treatment for the horde of human diseases caused by viruses.

The feat was made possible by UWM physicists, who developed a new generation of powerful algorithms to reconstruct sequential images from an ocean of unsorted, noisy data.  

Read more...

A Bright Future for Serial Femtosecond Crystallography with XFELs

BioXFEL scientist Vadim Cherezov and his colleagues released a new publication to CellPress:

X-ray free electron lasers (XFELs) have the potential to revolutionize macromolecular structural biology due to the unique combination of spatial coherence, extreme peak brilliance, and short duration of X-ray pulses. A recently emerged serial femtosecond (fs) crystallography (SFX) approach using XFEL radiation overcomes some of the biggest hurdles of traditional crystallography related to radiation damage through the diffraction-before-destruction principle.

Read more...

Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses

BioXFEL scientist Richard A. Kirian, along with his peers, published a research article onto IUCrj:

This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of ∼40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure.

Read more...

Single-shot determination of focused FEL wave fields using iterative phase retrieval

BioXFEL scientist Marc Messerschmidt, along with his colleagues, published a research article in OSA publishing.

Summary:

Determining fluctuations in focus properties is essential for many experiments at Self-Amplified-Spontaneous-Emission (SASE) based Free-Electron-Lasers (FELs), in particular for imaging single non-crystalline biological particles.

Read more...

Critical Role of Water Molecules in Proton Translocation by the Membrane-Bound Transhydrogenase

BioXFEL scientist Vadim Cherezov, along with others, publishes research article in ScienceDirect.

Abstract:

The nicotinamide nucleotide transhydrogenase (TH) is an integral membrane enzyme that uses the proton-motive force to drive hydride transfer from NADH to NADP+ in bacteria and eukaryotes.

Read more...

Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody

Monoclonal antibodies provide an attractive alternative to small-molecule therapies for a wide range of diseases. Given the importance of G protein-coupled receptors (GPCRs) as pharmaceutical targets, there has been an immense interest in developing therapeutic monoclonal antibodies that act on GPCRs.

Read more...